K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2016

37

100

19 tháng 9 2016

a) 37

b) 100

4 tháng 10 2017

\(bdt\Leftrightarrow a^2+b^2+c^2-ab-ac-bc-\frac{\left(a+b\right)^2}{26}-\frac{\left(b-c\right)^2}{6}-\frac{\left(c-a\right)^2}{2009}\ge0\)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]-\frac{\left(a+b\right)^2}{26}-\frac{\left(b-c\right)^2}{6}-\frac{\left(c-a\right)^2}{2009}\ge0\)

Đặt \(a-b=x;b-c=y;c-a=z\) nên

\(bdt\Leftrightarrow\frac{1}{2}\left(x^2+y^2+z^2\right)-\frac{x^2}{26}-\frac{y^2}{6}-\frac{z^2}{2009}\ge0\)

\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{26}\right)+\left(\frac{y^2}{2}-\frac{y^2}{6}\right)+\left(\frac{z^2}{2}-\frac{z^2}{2009}\right)\ge0\)

\(\Leftrightarrow\frac{6x^2}{13}+\frac{y^2}{3}+\frac{2007z^2}{4018}\ge0\)(luôn đúng \(\forall x;y;z\))

Vậy BTĐ đã được chứng minh

27 tháng 8 2015

Câu a.   Trong một tam giác có ít nhất hai góc nhọn, giả sử là B và C. Kẻ AH vuông góc với BC, thì H nằm giữa B,C. Ta đặt \(h=AH,x=HC\) . Theo định lý Pi-ta-go cho tam giác AHC ta có \(h^2+x^2=b^2.\)   (1)

Mặt khác \(BH=a-x\to\left(a-x\right)^2+h^2=AH^2+BH^2=AB^2=c^2\to\left(a-x\right)^2+h^2=c^2.\)  (2)

Trừ (1),(2) cho nhau ta được \(x^2-\left(a-x\right)^2=b^2-c^2\to x=\frac{b^2-c^2+a^2}{2a}.\)

Vì vậy \(h^2=b^2-x^2=b^2-\left(\frac{a^2+b^2-c^2}{2a}\right)^2=\frac{\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)}{4a^2}\)

 

Thành thử, \(S_{\Delta ABC}=\frac{1}{2}\cdot AH\cdot BC=\frac{1}{2}\cdot a\cdot\sqrt{\frac{\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)}{4a^2}}\)

\(\to S_{\Delta ABC}=\frac{1}{4}\cdot\sqrt{\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}.\)

 

Câu b. (Ở đây thiếu giải thích \(m_a\)  là độ dài trung tuyến kẻ từ A. 

Không mất tính tổng quát giả sử \(AB\le AC\), gọi M là trung điểm BC, thì H nằm giữa B,M. Theo trên ta có 

\(HM=HC-CM=x-\frac{a}{2}=\frac{b^2-c^2+a^2}{2a}-\frac{a}{2}=\frac{b^2-c^2}{2a}.\)

Vậy theo định lý Pitago ta có \(AM^2=AH^2+HM^2=h^2+AM^2=b^2-\left(\frac{a^2+b^2-c^2}{2a}\right)^2+\left(\frac{b^2-c^2}{2a}\right)^2=\)

\(\to AM^2=b^2-\frac{a^4+2a^2\left(b^2-c^2\right)}{4a^2}=b^2-\frac{a^2+2b^2-2c^2}{4}=\frac{2b^2+2c^2-a^2}{4}.\)  (ĐPCM)

 

 

 

CÂU I:cho biểu thức \(P=\left(\frac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\)a,rút gọn Pb,tìm x để \(\frac{1}{P}-\frac{\sqrt{x}+1}{8}\ge1\)CÂU II:1, giải phương trình:   \(x-\sqrt{x-8}-3\sqrt{x}+1=0\)2,giải hệ phương trình:\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)CÂU III:1,tìm các số nguyên dương x;y;z thỏa...
Đọc tiếp

CÂU I:

cho biểu thức \(P=\left(\frac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\)

a,rút gọn P

b,tìm x để \(\frac{1}{P}-\frac{\sqrt{x}+1}{8}\ge1\)

CÂU II:

1, giải phương trình:   \(x-\sqrt{x-8}-3\sqrt{x}+1=0\)

2,giải hệ phương trình:

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)

CÂU III:

1,tìm các số nguyên dương x;y;z thỏa mãn \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}\in Q\)và x2+y2+z2 là số nguyên tố

2,chứng minh rằng với n là số tự nhiên lớn hơn 1 thì 2n-1 không phải là số chính phương

CÂU IV:

cho tam giác ABC nhọn (AB<AC) nội tiếp (O;r).các đường cao AD;BE;CF cắt nhau tại H.tia EF cắt CB tại P;AP cắt (O;r) tại M(M khác A).

a,CMR:PE.PF=PM.PA

b,CMR:AM vuông góc với HM

c,cho BC cố định,điểm A di động trên cung lớn BC.Xác định vị trí của A để diện tích tam giác BHC lớn nhất

CÂU V:

cho a;b;c là các số thực dương.CMR:

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(\frac{a+b+c}{3}\right)^2\)

3
8 tháng 1 2018

dat \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}=\frac{a}{b}\) dk (a,b)=1 a,b thuoc N*

khi do \(bx-by\sqrt{2014}=ay-az\sqrt{2014}\)

\(\Leftrightarrow bx-ay=\left(by-az\right)\sqrt{2014}\)

\(\Rightarrow\hept{\begin{cases}bx-ay=0\\by-az=0\end{cases}\Leftrightarrow\hept{\begin{cases}bx=ay\\by=az\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\Rightarrow xz=y^2}\)

khi do \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-y^2=\left(x+z-y\right)\left(x+y+z\right)\)

vi x^2 +y^2 +z^2 la so nt va x+y+z>1

nen \(\hept{\begin{cases}x+y+z=x^2+y^2+z^2\\x+z-y=1\end{cases}}\)

giai ra ta co x=y=z=1

Câu !!   .1)\(PT< =>2x-2\sqrt{x-8}-6\sqrt{x}+2=0\)(đk:\(x\ge8\))

\(< =>x-8-2\sqrt{x-8}+1+x-6\sqrt{x}+9=0\)

\(< =>\left(\sqrt{x-8}-1\right)^2+\left(\sqrt{x}-3\right)^2=0\)

\(< =>\hept{\begin{cases}\sqrt{x-8}=1\\\sqrt{x}=3\end{cases}}\)

\(< =>x=9\)(thỏa mãn đk)

vậy.....