K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

1+6x-x2=-x2+6x-9+10=-(x2-2*x*3+3^2)+10=-(x-3)2+10

Ta có: -(x-3)2<=0(với mọi x)

=>-(x-3)2+10<=10(với mọi x)

hay 1+6x-x2<=10(________)

Do đó, GTLN của 1+6x-x2 là 10 khi:

x-3=0

x=0+3

x=3

Vậy GTLN của 1+6x-x2 là 10 khi x=3

5 tháng 9 2016

Ta có: 1 + 6x - x2 = -x2 + 6x + 1 = -(x2 - 6x - 1) = -(x2 - 2 . 3x + 32 - 10) = -[ (x - 3)2 - 10 ] = -(x - 3)2 + 10 \(\le\)10

=> Giá trị lớn nhất của 1 + 6x - x2 là 10 khi -(x - 3)2 = 0  => x = 3

Vậy x = 3 để 1 + 6x - x2 đạt giá trị lớn nhất là 10 

24 tháng 6 2016

\(A=x-x^2=-x^2+x=-\left(x^2-x\right)=-\left(x^2-x+1-1\right)\)

\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}-1\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}-1\right]=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)

Dấu "=" xảy ra <=> \(\left(x-\frac{1}{2}\right)^2=0< =>x=\frac{1}{2}\)

Vậy MaxA=1/4 khi x=1/2

\(B=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-2.x.3+9+2\right)=-\left[\left(x-3\right)^2+2\right]=-2-\left(x-3\right)^2\le-2\)

Dấu "=" xảy ra <=> x-3=0<=>x=3

Vậy maxB=-2 khi x=3

24 tháng 6 2016

Chỗ dấu = là trừ nhé 

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

1 tháng 11 2020

Ta có A = x2 - 6x + 10

= x2 - 6x + 9 + 1 

= (x - 3)2 + 1 \(\ge\)

Dấu "=" xảy ra <=>x - 3 = 0 => x = 3

Vậy Min A = 1 <=> x = 3

9 tháng 1 2017

ta có 

P = 2x^2 - 6x 

= 2( x^2 - 3x + 9/4) - 9/4

= 2( x-3/2)^2 - 9/4 

nhận xét 2(x-3/2)^2 >=0 

=> 2(x-3/2)^2 - 9/4 >=-9/4

dấu = xảy ra khi và chỉ khi 

x- 3/2 = 0 

=> x= 3/2

9 tháng 1 2017

4x - x^2 + 3 

= -x^2 + 4x - 4 +7

= -(x^2 - 4x + 4) + 7 

= -(x-2)^2 + 7 

nhận xét -(x-2)^2 <=0 

=> -(x-2)^2 + 7 <=7 

đấu = xảy ra khi và chỉ khi 

x-2 = 0 

=> x= 2

30 tháng 1 2018

Có : A+1 = 6x+8+x^2+1/x^2+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0

=> A >= -1

Dấu "=" xảy ra <=> x+3=0 <=> x=-3

Vậy GTNN của A = -1 <=> x=-3

Tk mk nha

30 tháng 1 2018

tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê 

26 tháng 7 2018

1, \(3x^2-5x+4\)

\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)

Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)

2, Bạn thử kiểm tra lại đề bài xem

17 tháng 7 2016

a,A=x^2+2.x.5/2+25/4+3/4

    =(x+5/2)2+3/4

nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4

vậy GTNN của A là 3/4

b,B=6x-x2-5

    = - (x2-6x+5)

    = - (x2-2.x.3+9-4)

    =-[(x-3)2-4]

    =-(x-3)^2+4

nx; -(x-3)^2 luôn nhỏ  hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4

Vậy GTLN của B là 4

27 tháng 6 2019

2.) A=x2-6x+15=(x-3)2+6

Vì (x-3)2>=0 với mọi x 

=> (x-s)2+6>=6 với mọi x

hay A>=6 với mọi x

Dấu = xảy ra <=> x-3=0 <=> x=3

Vậy....

B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10

vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y

6>0

=> (x-2)2+(2y+1) + 6>=6 với mọi x;y

hay B>=6 với mọi x;y

Dấu = xảy ra <=> x-2=0 và 2y+1=0

               <=> x=2 và y=-1/2

Vậy....

27 tháng 6 2019

3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7

vì -(x-2)2<=0 với mọi x

=> -(x-2)2+7<=7 với mọi x

hay A<=7 với mọi x

Dấu = xảy ra <=> x-2=0 <=> x=2

Vậy....

B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7

vì -(x-1)2<=0 với mọi x 

-(3y+1)2<=0 với mọi y

suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y

=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y

hay A<=7 với mọi x, y

Dấu = xảy ra <=> x-1=0 và 3y+1=0

                 <=> x=1 và y=-1/3

vậy...

15 tháng 7 2019

V1.a)Ta có : \(A=x^2+5x+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

Ta có : \(\left(x+\frac{5}{2}\right)^2\ge0=>\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "="xảy ra khi \(x+\frac{5}{2}=0=>x=-\frac{5}{2}\)

Vậy\(A_{min}=\frac{3}{4}\) khi \(x=-\frac{5}{2}\)

b)Ta có : \(B=6x-x^2-5=-\left(x^2-6x+5\right)=-[\left(x-3\right)^2-4]\)

Ta có : \(\left(x-3\right)^2\ge0=>B\le4\)

Dấu "="xảy ra khi (x-3)=0=>x=3

Vậy \(B_{mãx}=4\)khi x=3


 

15 tháng 7 2019

Bài 1: Tìm giá trị:

a) Nhỏ nhất của biểu thức: A = x2 + 5x + 7

Giải phương trình trên máy tính 

Lặp 3 lần dấu" = "

kq : GTNN của A = \(-\frac{5}{2}\)

b) Lớn nhất của biểu thức: B = 6x - x2 - 5

B = -x2 + 6x - 5

Giải phương trình trên máy tính 

Lặp 3 dấu " = "

kq : GTLN của B = 3