K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

a)Vì \(x:y:z=2:3:\left(-4\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)

          Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+-4}=\frac{-125}{-5}=25\)

\(\Rightarrow\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{-4}=25\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=50\\y=75\\z=-100\end{cases}\)

Vậy x=50;y=75;z=-100

d)Vì 2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)(1)

       5y=7z\(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)(2)

                       Từ (1) và (2) suy ra:\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng dãy tỉ số bằng nhau ta có:

      \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{x}{21}=2\\\frac{y}{14}=2\\\frac{z}{10}=2\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=42\\y=28\\z=20\end{cases}\)

 

20 tháng 7 2016

giúp b, c với ạ

24 tháng 9 2016

Bài 1:

a)\(\begin{cases}\left(x-3\right)^2+\left(y+2\right)^2=0\\\begin{cases}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\end{cases}\)

\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=-2\end{cases}\)

b) tương tự 

24 tháng 9 2016

b) (x-12+y)200+(x-4-y)200= 0

\(\begin{cases}\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\\\begin{cases}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{cases}\end{cases}\)

\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=12\left(1\right)\\x-y=4\left(2\right)\end{cases}\)

Trừ theo vế của (1) và (2) ta được:

\(2y=8\Rightarrow y=4\)\(\Rightarrow\begin{cases}x+4=12\\x-4=4\end{cases}\)\(\Rightarrow x=8\)

Vậy x=8; y=4

 

11 tháng 5 2019

Em có cách này anh/chị check thử ạ.

Dự đoán xảy ra cực trị tại: x = 2; y = 1; z = 0

Áp dụng BĐT quen thuộc: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\),ta có: \(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\)

\(\Rightarrow x+y+z+6\ge9\Leftrightarrow x+y+z\ge3\)

Đặt \(t=x+y+z\ge3\).Ta cần tìm min của: \(P\left(t\right)=t+\frac{1}{t}\) với \(t\ge3\)

Ta có: \(P\left(t\right)=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8t}{9}\)

\(\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8t}{9}=\frac{2}{3}+\frac{8t}{9}\ge\frac{2}{3}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}t=3\\\frac{1}{x+1}=\frac{1}{y+2}=\frac{1}{z+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\x+1=y+2=z+3=3\left(2\right)\end{cases}}\)

Giải (2) ta được x = 2; y = 1; z = 0 (t/m x + y + z = 3)

Vậy \(P_{min}=\frac{10}{3}\Leftrightarrow x=2;y=1;z=0\)

14 tháng 5 2021

hiiiii

29 tháng 7 2021

rg

30 tháng 3 2019

Đề bài cho:\(\left\{{}\begin{matrix}x-y+z=2012\\\frac{x}{y}=\frac{5}{2}\\\frac{y}{z}=\frac{52}{2012}\end{matrix}\right.\)\(\left\{{}\begin{matrix}x-y+z=2012\\2x=5y\\52z=2012y\end{matrix}\right.\)\(\left\{{}\begin{matrix}x-y+z=2012\\2x-5y=0\\-2012y+52z=0\end{matrix}\right.\)

đến đây các bạn có thể giải bằng máy tính (mode 5 2) \(\begin{matrix}1&-1&1&2012\\2&-5&0&0\\0&-2012&52&0\end{matrix}\)

hoặc giải tay:\(\left\{{}\begin{matrix}x-y+z=2012\\x=\frac{5y}{2}\\z=\frac{2012y}{52}\end{matrix}\right.\)thế x và z vào ta được y từ đó suy ra x và z

3 tháng 4 2019

TKS Youok

16 tháng 10 2019

đề có sai không bạn,tại một trong hai thì phải có một cái không âm,một cái âm trên cái khoảng chứ phải hôn:<

 còn chỉ tìm gtnn hay gtln thì chỉ tìm x = -b/2a rồi thế vào được nha