K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

ta có \(AD//BC\) (gt) (1)

và AD=BC (2)

từ 1 và 2 \(\Rightarrow\)ADCB là hình bình hành 

xét tg ADC và CBA có 

 AD=BC(cmt)

AB=DC(tc hbh)

AC chung 

\(\Rightarrow\)tgADC = tg CBA (c-c-c)

b) ta có góc BAD = góc BCD ( tc hbh )

c) ta có \(AB//DC\)(tc hbh )

nếu thấy đúng k cho mik nhé 

ko hiểu chỗ nào thì hỏi nha ^^

22 tháng 2 2020

a)) Ta có AD//BC ( gt ) ( 1 )

 AD = BC ( 2 )

Từ (1)(2) => ADCB là hình bình hành

Xét 2 tam giác : ADC và CBA có

AD=BC(gt)

AB=DC(tính chất hbh )

AC chung

=> Tam giác ADC = CBA ( đpcm )

vẽ hình cho mik đi bn đc k

3 tháng 1 2016

a b c x d

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh...
Đọc tiếp

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?

Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.

Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE

Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF

Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!

0
21 tháng 12 2020

a) Xét ΔADC và ΔCBA có 

AD=CB(gt)

\(\widehat{DAC}=\widehat{BCA}\)(Hai góc so le trong, AD//BC)

AC chung

Do đó: ΔADC=ΔCBA(c-g-c)

b) Ta có: ΔADC=ΔCBA(cmt)

nên \(\widehat{DCA}=\widehat{BAC}\)(hai góc tương ứng)

Ta có: \(\widehat{BAD}=\widehat{BAC}+\widehat{DAC}\)(tia AC nằm giữa hai tia AB,AD)

\(\widehat{BCD}=\widehat{BCA}+\widehat{DCA}\)(tia CA nằm giữa hai tia CB,CD)

mà \(\widehat{DCA}=\widehat{BAC}\)(cmt)

và \(\widehat{DAC}=\widehat{BCA}\)(hai góc so le trong, AD//BC)

nên \(\widehat{BAD}=\widehat{BCD}\)(đpcm)

c) Ta có: \(\widehat{DCA}=\widehat{BAC}\)(cmt)

mà \(\widehat{DCA}\) và \(\widehat{BAC}\) là hai góc ở vị trí so le trong

nên AB//DC(Dấu hiệu nhận biết hai đường thẳng song song)

21 tháng 12 2020

Bạn ơi sai đề nhé

17 tháng 12 2016

Câu ban đầu bạn viết sai, Cao thị thùy dương vẽ hình đúng rùi đấy, còn câu a Trần thị huệ cũng làm đúng lun, bạn tham khảo hình vẽ và câu a ở 2 bạn ấy nhé