Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7 chia het cho (2x+1)
ma 7 chia het cho 1;7
=>2x+1=1=>x=0
2x+1=7=>x=3
ket luan x = 0;3
từ từ thôi cái này tốn có 4 câu hỏi thôi mà cho vào 1 câu làm gì
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
Bài 1: P là lẻ, vì nếu P chẵn thì P = 2 => P + 4 = 6 là hợp số.
*) P = 3 => P + 4 = 7; P + 20 = 23 => hợp lí.
*) P > 3 => P phải là số không chia hết cho 3 vì nếu nó chia hết cho 3 thì không phải là hợp số (ngoài số 3)
=> P = 3k + 1 hoặc 3k + 2
+) Với P = 3k + 1 => P + 20 = 3k + 21 chia hết cho 3 => loại
+) Với P = 3k + 2 ==> P + 4 = 3k + 6 chia hết cho 3 => loại
Vậy P chỉ có thể = 3
Bài 2: S = 30 + 31 + 32 + ... + 3123
S = (30 + 31 + 32 + 33) + ... + (3120 + 3121 + 3122 + 3123)
S = 30(1 + 31 + 32 + 33) + ... + 3120.( 1 + 31 + 32 + 33)
S = 30.40 + ... + 3120.40
S = 40.(30 + ... + 3120) = 4.10.40.(30 + ... + 3120)
Vì tích chứa 10 => S chia hết cho 10.
S = 1 + 3 + 32 + ... + 3123
S = ( 1 + 3 + 32 + 33 ) + ( 34 + 35 + 36 + 37 ) + ... + ( 3120 + 3121 + 3122 + 3123 )
S = 1.40 + 34(1+3+32+33) + ... + 3120.(1+3+32+33)
S = 1.40 + 34.40 + ... + 3120.40
S = 4.10.(1+34+...+3120) chia hết cho 10
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59