Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2+1)(x-1)(x+3)>0
Vì x^2+1>0 với mọi x
nên: (x-1)(x+3)>0
Trường hợp 1:
x-1<0, x+3 <0
Vì x+3 > x-1 nên x+3<0 suy ra x<-3
Trường hợp 2:
x-1>0, x+3>0
Vì x-1<x+3 nên x-1 >0 suy ra x>1
Vậy x<-3 hoặc x>1
Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương
TH1: Có 2 số âm, 1 số dương
Trước hết ta có \(x+3>x-1\)
\(x^2+1>x-1\)
Vì vậy \(x-1< 0\)
\(x^2+1>0\) nên \(x+3< 0\)
\(\Rightarrow x< -3\left(< 1\right)\)
TH2: Cả 3 số đều dương
Xét số bé nhất lớn hơn 0:
\(x-1>0\Rightarrow x>1\)
Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)
\(2014x^2+2012x-2=0\)
<=>\(2014x^2-2x+2014x-2=0\)
<=>\(\left(2014x^2-^{ }2014x\right)+\left(2x-2\right)\)\(=0\)
<=>\(2014x\left(x-1\right)+2\left(x-1\right)\)\(=0\)
<=>(2014x+2)(x-1)=0
<=>2014x+2=0 <=> x=-1/1007
x-1=0 x=1
kết luận........
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
Nên \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\) \(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy x = 1 và y = -2
ko btrtjgi