K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

a, Vì tam giác ABC cân tại A nên \(\widehat{NBM}=\widehat{ACB}\)

Mà \(\widehat{ACB}=\widehat{PCQ}\left(đối.đỉnh\right)\Rightarrow\widehat{NBM}=\widehat{PCQ}\)

Mà \(\widehat{NMB}=\widehat{CPQ}=90^0;BM=PC\)

Do đó \(\Delta BMN=\Delta CPQ\left(g.c.g\right)\)

b, Vì \(BM//PQ\left(\perp BP\right)\) nên \(\widehat{MNI}=\widehat{IQP}\)

Mà \(\widehat{NMI}=\widehat{IPQ}=90^0;MN=PQ\left(\Delta BMN=\Delta CPQ\right)\)

Do đó \(\Delta IMN=\Delta IPQ\left(g.c.g\right)\)

\(\Rightarrow IN=IQ\)

c, Vì IK là đường cao cũng là trung tuyến tam giác KNQ nên tam giác KNQ cân tại K

5 tháng 11 2021

giúp mình nốt câu d và e được ko làm ơn

5 tháng 11 2021

em ko bt,em mới lớp 6

5 tháng 11 2021

ko biế thì nhắn vào đây làm chi

30 tháng 8 2021

1/

Xét tg ABC có AB=AC => tg ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) (Trong tg cân hai góc ở đáy = nhau)

BH=CH => AH là đường trung tuyến \(\Rightarrow AH\perp BC\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường cao và đường trung trực)

2/ Ta có

\(MN\perp BC;CP\perp BC\) => MN//CP

MN=CP

=> Tứ giác MNPC là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau thì tứ giác đó là hbh)

=> MN=CP; MC=NP; MP chung \(\Rightarrow\Delta MCP=\Delta PMN\left(c.c.c\right)\)

3/

Trong hình bình hành MNPC thì MP và NC là hai đường chéo hbh 

=> I là trung điểm của NC (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

30 tháng 8 2021

bạn ơi giúp mình nốt bài 3 này nha mình cảm ơn nhiềuundefined

29 tháng 10 2021

a/ Xét tg vuông ABE và tg vuông PBE có

BE chung 

\(\widehat{ABE}=\widehat{PBE}\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta PBE\) (cạnh huyền và góc nhọn tương ứng bằng nhau)

b/ Xét tg ABI và tg PBI có

\(\Delta ABE=\Delta PBE\Rightarrow BA=BP\) 

BI chung

\(\widehat{ABI}=\widehat{PBI}\left(gt\right)\)

\(\Rightarrow\Delta ABI=\Delta PBI\left(c.g.c\right)\Rightarrow AI=IP\) (1)

Xét tg vuông ACF và tg vuông QCF có 

CF chung

\(\widehat{ACF}=\widehat{QCF}\left(gt\right)\)

\(\Rightarrow\Delta ACF=\Delta QCF\) (cạnh huyền và góc nhọn tương ứng bằng nhau) 

Xét tg ACI và tg QCI có

\(\Delta ACF=\Delta QCF\Rightarrow AC=QC\)

CI chung

\(\widehat{ACI}=\widehat{QCI}\left(gt\right)\)

\(\Rightarrow\Delta ACI=\Delta QCI\left(c.g.c\right)\Rightarrow AI=IQ\) (2)

Từ (1) và (2) \(\Rightarrow AI=IP=IQ\)

29 tháng 10 2021

c/

Xét tg QIP có

IQ=IP => tg QIP cân ở I

Mà \(ID\perp BC\)

\(\Rightarrow DQ=DP\) (Trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung tuyến)

=> D là trung điểm của PQ