Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có bốn chữ số tổng quát là 1000.a+b.100+c.10+d . Theo bài a+b+c+d=11 (1)
Cho a+c−b−d: 11=k (k E Z) (2)
a;b;c;d ≤ 9 => k E {0;1;-1}. Sở dĩ như vậy vì nếu k=2 => (a+c)-(b+d)=22 vô lí !
TH1: k=0 => a+c-(b+d)=11.k. (3)
Công (1);(3) ta được 2.(a+c)=11.(1+k) => 2.(a+c)=11 => a+c=5,5 vô lí nên loại.
TH2: k=-1 => 2.(a+c)=11.(1+k)=0 => a=c=0 vô lí nên loại.
TH3: k=1 . Lấy (1) trừ đi (3)
2.(b+d)=11.(1-k) => b=d=0 => nếu a=2 thi c=9
a=3 => c=8
a=4 => c=7
a=5 => c=6
a=6 => c=5
a=7 => c=4
a=8 => c=3
a=9 => c=2
Vậy các số cần tìm là: 2090;3080;4070;5060;6050;7040;8030;9020
=> có 8 số có 4 chữ số chia hết cho 11 và tổng các chữ số của nó cũng chia hết cho 11.
a , Có 2 các chọn chữ số hàng trăm
Có 2 cách chọn chữ số hàng chục
Có 1 cách chọn chữ số
Vậy có tất cả : 2 x 2 x 1 = 4 ( số )
b , có 2 cách chọn chữ số hàng trăm
Có 1 cách chọn chữ số hàng chục
Có 1 cách chọn chữ số hàng đơn vị
Vậy có tất cả : 2 x 1 x 1 = 2 ( số )
c, Có 3 cách chọn chữ số hàng nghìn
Có 3 cách chọn chữ số hàng trăm
Có 3 cách chọn chữ số hàng chục
Có 1 cách chọn chữ số hàng đơn vị
Vậy có tất cả : 3 x 3 x 3 x 1 = 27 ( số )
Ta có :
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}.5\)
\(\Rightarrow S< 1,5\left(1\right)\)
Lại có :
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}.5\)
\(\Rightarrow S>1\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow1< S< 1,5\)
\(\Rightarrow S\)ko phải là STN
a) \(A=3+3^2+..+3^{60}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)
Vậy A chia hết cho 4
b) \(A=3+3^2+3^3+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=13\cdot\left(3+..+3^{58}\right)\)
Vậy A chia hết cho 13
\(A=2+2^2+2^3+.........+2^{60}\)
\(\Rightarrow2A=2.\left(2+2^2+2^3+.......+2^{60}\right)\)
\(\Leftrightarrow2A=2^2+2^3+........+2^{60}+2^{61}\)
\(\Leftrightarrow2A-A=\left(2^2+2^3+......+2^{60}+2^{61}\right)-\left(2+2^2+2^3+........+2^{60}\right)\)
\(\Leftrightarrow1A=2^{61}-2\)
Mà 2^61 có tận cùng là chữ số 2 nên 2^61 - 2 sẽ có tận cùng là chữ số 0 chia hết cho 5
Vậy A chia hết cho 5
\(A=2+2^2+2^3+......+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+.......+\left(2^{59}+2^{60}\right)\)
\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+.......+2^{59}.\left(1+2\right)\)
\(A=2.3+2^3.3+.......+2^{59}.3\)
\(A=3.\left(2+2^3+....+2^{59}\right)\)
A chia hết cho 3
\(A=2+2^2+2^3+.......+2^{60}\)
\(A=\left(2+2^2+2^3\right)+.........+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2.\left(1+2+2^2\right)+......+2^{58}.\left(1+2+2^2\right)\)
\(A=2.7+....+2^{58}.7=7.\left(2+....+2^{58}\right)\)
A chia hết cho 7
Nhớ k cho mình nhé! Cảm ơn!!!
A = 1 + 32 + 34 + ...+ 32002
A = ( 1 + 32 + 34 ) + ( 36 + 38 + 310 ) + ... + ( 31998 + 32000 + 32002 )
A = 91 + 36(1+32+34) + ... + 31998(1+32+34)
A = 91.(36 + 38 + ... + 31998 ) chia hết cho 7
=> đpcm