Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(C=\left(x+y\right)^2-2xy=6^2-2\cdot\left(-4\right)=36+8=44\)
\(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=288\)
b: \(A=x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1>0\)
\(B=x^2-2x+1+9y^2-6y+1+1=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)
c: \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3>=-3\)
Dấu = xảy ra khi x=2
\(B=4x^2+4x+1+10=\left(2x+1\right)^2+10>=10\)
Dấu = xảy ra khi x=-1/2
\(C=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21< =21\)
Dấu = xảy ra khi x=-4
\(D=-\left(x^2-5x\right)=-\left(x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}\right)\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}< =\dfrac{25}{4}\)
Dấu = xảy ra khi x=5/2
Bài 1:
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)
\(A=x^3-y^3+2y^3\)
\(A=x^3+y^3\)
Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:
\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)