\(\frac{2\sqrt{3}-4}{\sqrt{3}-1}+\frac{2\sqrt{2}-1}{\sqrt{2}-1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

a,

\(\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}+\sqrt{\frac{\left(2-\sqrt{2}\right)^2}{\left(2+\sqrt{2}\right).\left(2-\sqrt{2}\right)}}\)

=\(\sqrt{2}+\frac{2-\sqrt{2}}{\sqrt{2}}\)

=\(\sqrt{2}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}}\)

=\(\sqrt{2}+\sqrt{2}-1\)

=\(2\sqrt{2}-1\)

còn tiếp

3 tháng 7 2017

b=,\(\frac{6\sqrt{3}}{3}-\frac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}-\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}-\sqrt{3}}\)

=\(6-1+\sqrt{3}-\sqrt{6}\)

=\(5+\sqrt{3}+\sqrt{6}\)

8 tháng 9 2020

2. a) \(ĐKXĐ:x\ge\frac{1}{3}\)

 \(\sqrt{3x-1}=4\)\(\Rightarrow\left(\sqrt{3x-1}\right)^2=4^2\)

\(\Leftrightarrow3x-1=16\)\(\Leftrightarrow3x=17\)\(\Leftrightarrow x=\frac{17}{3}\)( thỏa mãn ĐKXĐ )

Vậy \(x=\frac{17}{3}\)

b) \(ĐKXĐ:x\ge1\)

\(\sqrt{x-1}=x-1\)\(\Rightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow x-1=x^2-2x+1\)\(\Leftrightarrow x^2-2x+1-x+1=0\)

\(\Leftrightarrow x^2-3x+2=0\)\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)( thỏa mãn ĐKXĐ )

Vậy \(x=1\)hoặc \(x=2\)

3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)

Vì \(6>1\)\(\Leftrightarrow\sqrt{6}>\sqrt{1}=1\)\(\Rightarrow\sqrt{6}-1>0\)

\(6>4\)\(\Rightarrow\sqrt{6}>\sqrt{4}=2\)\(\Rightarrow\sqrt{6}-2>0\)

\(\Rightarrow\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|=\left(\sqrt{6}-1\right)-\left(\sqrt{6}-2\right)\)

\(=\sqrt{6}-1-\sqrt{6}+2=1\)

hay \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=1\)

8 tháng 9 2020

2a) \(\sqrt{3x-1}=4\)( ĐKXĐ : \(x\ge\frac{1}{3}\))

Bình phương hai vế

\(\Leftrightarrow\left(\sqrt{3x-1}\right)^2=4^2\)

\(\Leftrightarrow3x-1=16\)

\(\Leftrightarrow3x=17\)

\(\Leftrightarrow x=\frac{17}{3}\)( tmđk )

Vậy phương trình có nghiệm duy nhất là x = 17/3

b) \(\sqrt{x-1}=x-1\)( ĐKXĐ : \(x\ge1\))

Bình phương hai vế 

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow x-1=x^2-2x+1\)

\(\Leftrightarrow x^2-2x+1-x+1=0\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)

Vậy phương trình có hai nghiệm là x = 1 hoặc x = 2

3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)

\(=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}-\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot2+2^2}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}\)

\(=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)

\(=\sqrt{6}-1-\left(\sqrt{6}-2\right)\)

\(=\sqrt{6}-1-\sqrt{6}+2\)

\(=1\)