Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ps : Bn tự vẽ hình nhé, mk chỉ giải thôi ạ.
a) Xét \(\Delta ABC\)và \(\Delta HAB\)
\(\widehat{BAC}=\widehat{BHA}=90^O\)
\(\widehat{ABC}chung\)
\(\Rightarrow\Delta ABC~\Delta HBA\)( g - g )
b) Xét \(\Delta AHD\)và \(\Delta CED\)
\(\widehat{AHD}=\widehat{CED}=90^O\)
\(\widehat{ADH}=\widehat{CDE}\)( đối đỉnh )
\(\Rightarrow\Delta AHD~\Delta CED\left(g-g\right)\)
\(\Rightarrow\frac{AH}{AD}=\frac{CE}{CD}\Rightarrow AH.CD=AD.CE\)
c) Vì H là trung điểm của BD mà \(AH\perp BD\)
=> AH là đường trung trực của BD
\(\Rightarrow AB=AD\)
Mà : \(\frac{AH}{AD}=\frac{CE}{CD}\)
\(\Rightarrow\frac{AH}{AB}=\frac{CE}{CD}\)
Vì \(\Delta ABC~\Delta HBA\Rightarrow\frac{AH}{AB}=\frac{CA}{CB}\)
Do đó : \(\frac{CE}{CD}=\frac{CA}{CB}=\frac{8}{10}=\frac{4}{5}\)
Vì \(\Delta CED\)vuông
\(\Rightarrow S_{CED}=\frac{CE.ED}{2}\)
\(AB//FK\Rightarrow\widehat{BAH}=\widehat{KFH}\)
\(\widehat{AHB}=\widehat{FHK}=90^O\)
\(BA=HD\)
\(\Rightarrow\Delta AHB=\Delta FHK\)
\(\Rightarrow HA=HF\)mà \(CH\perp AF\)
=> CH là đường trung trực AF \(\Rightarrow\Delta ACF\)cân tại C
Do đó : D là trọng tâm \(\Delta ACF\)
\(\Rightarrow CD=\frac{2}{3}CH\)
Mà \(\cos ACB=\frac{AC}{BC}=\frac{CH}{CA}=\frac{4}{5}\Rightarrow CH=\frac{32}{5}\Rightarrow CD=\frac{64}{15}\)
\(\Rightarrow\frac{CE}{CD}=\frac{4}{5}\Rightarrow CE=\frac{256}{75}\)
\(ED=\sqrt{CD^2-CE^2}=\frac{64}{25}\)
\(\Rightarrow S_{CED}=\frac{8192}{1875}\)
d) Vì \(\Delta ACF\)cân tại C \(\Rightarrow KE//AF\Rightarrow\widehat{EKF}=\widehat{AFK}\)
Vì HK là trung tuyến \(\Delta AFK\)\(\Rightarrow\widehat{AFK}=\widehat{HKF}\)
Do đó : \(\widehat{HKF}=\widehat{EKF}\)
=> KD là phân giác \(\widehat{HKE}\)
# Aeri #
23.27. \(x^2-y^2-2x+1\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
23.25.
\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)
\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)
23.23
\(x^3-2x^2-6x+27\)
\(=\left(x^3+27\right)-2x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)
\(=\left(x+3\right)\left(x^2-5x+9\right)\)
a) x\(^2\) - 10x + 9 =0
x\(^2\) - 2x . 5 + 25 = 16
(x - 5)\(^2\) = 4\(^2\)
=> x - 5 = 4
x = 9
Vậy x = 9
b) x\(^2\) - 7x + 6 = 0
x\(^2\) - 2x . 3,5 + 12,25 = 6,25
(x - 3,5)\(^2\) = 2,5\(^2\)
=> x - 3,5 = 2,5
x = 6
Vậy x = 6
c) x\(^2\) + 13x + 12 = 0
x\(^2\) + 2x . 6,5 + 42,25 = 30,25
(x + 6,5)\(^2\) = 5,5\(^2\)
=> x + 6,5 = 5,5
x = -1
Vậy x = -1
d) x\(^2\) - 24x + 23 = 0
x\(^2\) - 2x . 12 + 244 = 121
(x - 12)\(^2\) = 11\(^2\)
=> x - 12 = 11
x = 23
Vậy x = 23
e) 3x\(^2\) + 14x + 8 = 0
3x\(^2\) + 2 . \(\sqrt{3}\)x . \(\frac{7}{\sqrt{3}}\) + \(\frac{49}{3}\) = \(\frac{25}{3}\)
(\(\sqrt{3}\)x + \(\frac{7}{\sqrt{3}}\))\(^2\) = \(\left(\frac{5}{\sqrt{3}}\right)^2\)
=> \(\sqrt{3}\)x + \(\frac{7}{\sqrt{3}}\) = \(\frac{5}{\sqrt{3}}\)
=> \(\sqrt{3}\)x = \(\frac{-2}{\sqrt{3}}\)
=> x = \(\frac{-2}{3}\)
a. -2x(x3 - 3x2 - x + 1)
= -2x4 + 6x3 + 2x2 - 2x
c. 3x2(2x3 - x + 5)
= 6x5 - 3x3 + 15x2
Bài 3:
a: Ta có: \(6x\left(5x-3\right)+3x\left(1-10x\right)=7\)
\(\Leftrightarrow30x^2-18x+3x-30x^2=7\)
\(\Leftrightarrow x=-\dfrac{7}{15}\)
b: Ta có: \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)
hay x=2
c: ta có: \(x\left(5-2x\right)-2x\cdot\left(x-1\right)=15\)
\(\Leftrightarrow5x-2x^2-2x^2+2x-15=0\)
\(\Leftrightarrow-4x^2+7x-15=0\)
\(\text{Δ}=7^2-4\cdot\left(-4\right)\cdot\left(-15\right)=-191\)
Vì Δ<0 nên phương trình vô nghiệm