K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

19A= \(\dfrac{19^{19}+19}{19^{19}+1}=\dfrac{19^{19}+1+18}{19^{19}+1}=1+\dfrac{18}{19^{19}+1}\)

19B = \(\dfrac{19^{18}+19}{19^{18}+1}=\dfrac{19^{18}+1+18}{19^{18}+1}=1+\dfrac{18}{19^{18}+1}\)

Ta có: 19A<19B

=> A<B

9 tháng 3 2018

Tham khảo của mk nhé 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(A=\frac{19^{18}+1}{19^{19}+1}< \frac{19^{18}+1+18}{19^{19}+1+18}=\frac{19^{18}+19}{19^{19}+19}=\frac{19\left(19^{17}+1\right)}{19\left(19^{18}+1\right)}=\frac{19^{17}+1}{19^{18}+1}=B\)

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~

9 tháng 3 2018

\(19A\)=\(\frac{19^{19}+19}{19^{19}+1}\)=\(1+\frac{19}{19^{19}+1}\)\(19B\)=\(\frac{19^{18}+19}{19^{18}+1}\)=\(1+\frac{1}{19^{18}+1}\)

mà 19^19+1>19^18+1

nên \(1+\frac{1}{19^{19}+1}< 1+\frac{1}{19^{18}+1}\)

18 tháng 5 2017

Bài này có rất nhiều cách lm nhé!

Ta có : A = \(\dfrac{17^{18}+1}{17^{19}+1}\) => 17A = \(\dfrac{17^{19}+17}{17^{19}+1}\) = \(1+\dfrac{16}{17^{19}+1}\)

B = \(\dfrac{17^{17}+1}{17^{18}+1}\) => 17B = \(\dfrac{17^{18}+17}{17^{18}+1}\) = \(1+\dfrac{16}{17^{18}+1}\)

\(\dfrac{16}{17^{19}+1}\) < \(\dfrac{16}{17^{18}+1}\) ( vì 1719 +1 > 1716+1 )

=> \(1+\dfrac{16}{17^{19}+1}\) < \(1+\dfrac{16}{17^{18}+1}\)

=> 17A < 17B

=> A < B ( vì 17 > 0)

10 tháng 3 2018

Ta có :

\(A=\dfrac{17^{18}+1}{17^{19}+1}\)

17A= \(17\times\dfrac{17^{18}+1}{17^{19}+1}\)

\(17A=\dfrac{17^{19}+17}{17^{19}+1}\)

\(17A=\dfrac{\left(17^{19}+1\right)+16}{17^{19}+1}\)

\(17A=\dfrac{17^{19}+1}{17^{19}+1}+\dfrac{16}{17^{19}+1}\)

\(17A=1+\dfrac{16}{17^{19}+1}\)

Lại có :

\(B=\dfrac{17^{17}+1}{17^{18}+1}\)

\(17B=17\times\dfrac{17^{17}+1}{17^{18}+1}\)

\(17B=\dfrac{17^{18}+17}{17^{18}+1}\)

\(17B=\dfrac{\left(17^{18}+1\right)+16}{17^{18}+1}\)

\(17B=\dfrac{17^{18}+1}{17^{18}+1}+\dfrac{16}{17^{18}+1}\)

\(17B=1+\dfrac{16}{17^{18}+1}\)

Mà : \(\dfrac{16}{17^{19}+1}< \dfrac{16}{17^{18}+1}\)

\(\Rightarrow1+\dfrac{16}{17^{19}+1}< 1+\dfrac{16}{17^{18}+1}\)

⇒ A < B

Vậy A < B

29 tháng 4 2017

cách làm này sai nhé!

3 tháng 3 2017

Cảm ơn bạn

\(A=\dfrac{113^{20}+113-112}{113^{19}+1}=113-\dfrac{112}{113^{19}+1}\)

\(B=\dfrac{113^{19}+113-112}{113^{18}+1}=113-\dfrac{112}{113^{18}+1}\)

mà \(113^{19}+1>113^{18}+1\)

nên \(A>B\)

3 tháng 5 2017

Ta có: \(\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}=\left(\dfrac{1}{19}+1\right)+\left(\dfrac{2}{18}+1\right)+...+1\)

\(=\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+\dfrac{20}{20}=20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)\)

Thế lại bài toán ta được

\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=\dfrac{20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=20\)

3 tháng 5 2017

Ta có

\(\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}\\ =\dfrac{1}{19}+1+\dfrac{2}{18}+1+\dfrac{3}{17}+1+...+\dfrac{19}{1}+1-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{1}-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+20-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{2}+1+19-19\\ =\dfrac{20}{20}+\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}\\ =20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)\)

Thế vào ta có:

\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\\ =\dfrac{20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)}{\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}}\\ =20\)

12 tháng 5 2018

\(A=\frac{17^{18}+1}{17^{19}+1}\)

\(17A=\frac{17^{19}+17}{17^{19}+1}=\frac{\left(17^{19}+1\right)+16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)

\(B=\frac{17^{17}+1}{17^{18}+1}\)

\(17B=\frac{17^{18}+17}{17^{18}+1}=\frac{\left(17^{18}+1\right)+16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)

\(\text{Vì}\)\(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)

\(\Leftrightarrow17A< 17B\)

\(\Leftrightarrow A< B\)

12 tháng 5 2018

Trả lời

\(17A=\frac{\left(17^{18}+1\right)17}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)

\(17B=\frac{\left(17^{17}+1\right)17}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)

Vì \(17^{19}+1>17^{18}+1\)

\(\Rightarrow\frac{16}{17^{18}+1}>\frac{16}{17^{19}+1}\)

\(\Rightarrow1+\frac{16}{17^{18}+1}>1+\frac{16}{17^{19}+1}\)

\(\Rightarrow B>A\)

17 tháng 5 2017

Ta có: \(20A=\dfrac{20^{19}+20}{20^{19}+1}=1+\dfrac{19}{20^{19}+1}\)

\(20B=\dfrac{20^{18}+20}{20^{18}+1}=1+\dfrac{19}{20^{18}+1}\)

\(\dfrac{19}{20^{19}+1}< \dfrac{19}{20^{18}+1}\Rightarrow1+\dfrac{19}{20^{19}+1}< 1+\dfrac{19}{20^{18}+1}\)

\(\Rightarrow20A< 20B\Rightarrow A< B\)

Vậy A < B

17 tháng 5 2017

Ta có: \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)(a \(\in\) N và b,c,d \(\in\) N*)

Áp dụng kiến thức đó, ta được:

A = \(\dfrac{20^{18}+1}{20^{19}+1}\) <\(\dfrac{20^{18}+1+19}{20^{19}+1+19}\)= \(\dfrac{20^{18}+20}{20^{19}+20}\) = \(\dfrac{20\left(20^{17}+1\right)}{20\left(20^{18}+1\right)}\)

= \(\dfrac{20^{17}+1}{20^{18}+1}\) = B

Vậy A < B

26 tháng 4 2017

\(\dfrac{1}{13}A=\dfrac{13^{19}+1}{13^{19}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{19}+\dfrac{1}{13}}\)

\(\dfrac{1}{13}B=\dfrac{13^{20}+1}{13^{20}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)

\(\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< \dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\Rightarrow1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< 1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)

\(\Rightarrow\dfrac{1}{13}A>\dfrac{1}{13}B\Rightarrow A>B\)

Vậy...

27 tháng 4 2017

Ta xét hiệu:

\(A-1=\dfrac{3^{19}+1}{3^{18}+1}-1=\dfrac{3^{19}-3^{18}}{3^{18}+1}=\dfrac{3^{18}.2}{3^{18}+1}\)

\(B-1=\dfrac{3^{20}+1}{3^{19}+1}-1=\dfrac{3^{20}-3^{19}}{3^{19}+1}=\dfrac{3^{19}.2}{3^{19}+1}\)

Xét: \(\dfrac{A-1}{B-1}=\dfrac{3^{18}.2}{3^{18}+1}\cdot\dfrac{3^{19}+1}{3^{19}.2}=\dfrac{3^{19}+1}{\left(3^{18}+1\right).3}=\dfrac{3^{19}+1}{3^{19}+3}< 1\)

=> A-1<B-1

=>A<B

27 tháng 3 2017

Bài 2:

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

\(\Leftrightarrow x+1=2017\Leftrightarrow x=2016\)

Vậy \(x=2016\)

25 tháng 12 2018

2.x=2016