Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(n^2 - 1 = (n-1)(n+1)\)
\(n \) là nguyên tố lớn hơn \(3 \implies n-1;n+1\) là hai số chẵn liên tiếp
\(=> (n-1)(n+1) \) chia hết cho \(8\) \((1)\)
Vì \(n \) là nguyên tố lớn hơn 3 nên ta có : \(n = 3k +1 ; 3k +2\) \((2)\)
Với \(n= 3k + 1\)
\(=> (n-1)(n+1) = (3k+1-1)(n+1) = 3k(n+1) \) chia hết cho 3
Với \(n = 3k+2\)
\(=> (n-1)(n+1) = (n-1)(3k+2+1) = (n-1)(k+1)3 \) chi hết cho 3
- Từ \((1) \),\((2)\) ta thấy \((n-1)(n+1) = n^2 -1\) chia hết cho cả \(8;3\)
\(=> n^2 - 1 \) chia hết cho \(24 (đpcm)\)
\(7^{n+4}-7^n\)
\(\Rightarrow7^n\cdot7^4-7^n\)
\(\Rightarrow7^n\cdot\left(7^4-1\right)\)
\(\Rightarrow7^n\cdot\left(2401-1\right)\)
\(\Rightarrow7^n\cdot2400\)
\(\Rightarrow7^n\cdot30\cdot80⋮30\left(đpcm\right)\)
\(3^{n+2}+3^n\)
\(\Rightarrow3^n\cdot3^2+3^n\)
\(\Rightarrow3^n\cdot\left(3^2+1\right)\)
\(\Rightarrow3^n\cdot\left(9+1\right)\)
\(\Rightarrow3^n\cdot10⋮10\left(đpcm\right)\)
a) ta có: 4n-7 chia hết cho n -1
=> 4n - 4 - 3 chia hết cho n - 1
4.(n-1) - 3 chia hết cho n - 1
mà 4.(n-1) chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3)={1;-1;3;-3}
...
rùi bn tự lập bảng xét giá trị nha
b) ta có: 5n -8 chia hết cho 4-n
=> 12 - 20 + 5n chia hết cho 4 -n
12 - 5.(4-n) chia hết cho 4 -n
mà 5.(4-n) chia hết cho 4 -n
=> 12 chia hết cho 4-n
=> ...
b: \(2005^{2006}\) là số lẻ
và \(2007^{2006}\) là số lẻ
nên \(2005^{2006}+2007^{2006}⋮2\)
a: Vì \(2061m⋮9\)
và \(5013n⋮9\)
nên \(2061m+5013n⋮9\)
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\\ \)
- Nếu n chia hết cho 5 thì A chia hết cho 5
- Nếu n chia 5 dư 1 thì (n-1) chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 2 thì n = 5k +2 => n2 + 1 = 25k2 + 20k + 4 + 1 chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 3 thì n = 5k +3 => n2 + 1 = 25k2 + 30k + 9 + 1 chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 4 thì (n+1) chia hết cho 5 => A chia hết cho 5
n thuộc N lớn hơn hoặc bằng 2 chỉ có 5 trường hợp có số dư như trên khi chia cho 5. Nên A chia hết cho 5 với mọi n thuộc N lớn hơn hoặc bằng 2.
\(3^{n+2}+3^n=3^n.3^2+3^n=3^n.9+3^n=3^n\left(9+1\right)=10.3^n⋮10\)