K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 11 2018

\(m\left(2^{x^2-5x+6}-1\right)-\left(2^{7-5x}-2^{1-x^2}\right)=0\)

\(\Leftrightarrow m\left(2^{x^2-5x+6}-1\right)-2^{1-x^2}\left(2^{x^2-5x+6}-1\right)=0\)

\(\Leftrightarrow\left(m-2^{1-x^2}\right)\left(2^{x^2-5x+6}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2^{1-x^2}=m\left(1\right)\\2^{x^2-5x+6}=1\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x^2-5x+6=0\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Để pt đã cho có 4 nghiệm phân biệt thì (1) phải có 2 nghiệm phân biệt khác 2 và 3 \(\Rightarrow m\ne\dfrac{1}{8};m\ne\dfrac{1}{256}\)

Với \(0< m< 2\), lấy logarit cơ số 2 hai vế của (1) ta được:

\(1-x^2=log_2m\Leftrightarrow x^2=1-log_2m\Rightarrow x=\pm\sqrt{1-log_2m}\)

\(\Rightarrow\) với m thỏa mãn \(\left\{{}\begin{matrix}0< m< 2\\m\ne\dfrac{1}{8}\\m\ne\dfrac{1}{256}\end{matrix}\right.\) thì pt đã cho có 4 nghiệm phân biệt

\(\Rightarrow\) có vô số giá trị m thỏa mãn

Nếu đề hỏi là giá trị nguyên của m thì chỉ có duy nhất \(m=1\), mình nghĩ bạn đã ăn bớt mất chữ "nguyên" của đề bài :D

24 tháng 11 2018

Nếu đề bài không hỏi 4 nghiệm phân biệt mà hỏi có đúng 3 nghiệm phân biệt thì điều kiện như thế nào vậy ạ?

25 tháng 8 2017

Chọn C.

Ta có:

17 tháng 9 2019

18 tháng 9 2018

30 tháng 5 2018

7 tháng 5 2018

Chọn A

16 tháng 4 2018

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên

3 tháng 11 2018

Chọn B.

Đặt t= 5x>  0.

+ Phương trình đã cho trở thành: t2-( m+2) t+2m-1=0  suy ra   ( 2)

 ( với t= 2 phương trình vô nghiệm).

Do đó phương trình đã cho có nghiệm khi phương trình (2) có nghiệm t> 0 .

+ Lập bảng biến thiên của hàm số f(t)  dựa vào bảng biến thiên suy ra  m ≤ 0 m ≥ 4

kết hợp điều kiện m nguyên và m  ∈ [0;2018] => m  ∈ {0;4;5;6;...;2018}

Vậy nghiệm 2016 giá trị của m thỏa mãn yêu cầu bài toán ra