K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

a: \(=xy^5\cdot\dfrac{1}{4}x^6\cdot\left(-8\right)y^3z^3=-2x^7y^8z^3\)

b: \(f\left(1\right)=3\cdot1^2-4+1=0\)

=>x=1 là nghiệm của f(x)

\(f\left(-\dfrac{1}{3}\right)=3\cdot\dfrac{1}{9}-4\cdot\dfrac{-1}{3}+1=\dfrac{1}{3}+\dfrac{4}{3}+1=\dfrac{8}{3}\)

=>x=-1/3 không là nghiệm của f(x)

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

21 tháng 2 2017

Ta có :

\(S=1.2+2.3+...+49.50\)

\(\Leftrightarrow3S=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+49.50.\left(51-48\right)\)

\(\Leftrightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+...+49.50.51-48.49.50\)

\(\Leftrightarrow3S=49.50.51\)

\(\Leftrightarrow S=\frac{49.50.51}{3}=41650\)

21 tháng 2 2017

S=1 . 2 + 2.3+3.4+.....+49.100

3S=1.2.3+2.3.3+3.4.3+....+49.50.3

3S=1.2.3+2.3.(4-1)+3.4(5-2)+....+49.50(51-48)

3S=1.2.3-2.3.4+2.3.4-2.3.1+......+48.49.50+49.50.51

3S=49.50.51

S=49.50.51 / 3

S=41650

5 tháng 2 2017

\(\)\(A=2^0+2^1+2^2+2^3+...+2^{2012}\\ A=1+2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2010}+2^{2011}+2^{2012}\right)\\ A=3+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2010}\cdot\left(1+2+2^2\right)\\ A=3+2^2\cdot\left(1+2+4\right)+2^5\cdot\left(1+2+4\right)+...+2^{2010}\cdot\left(1+2+4\right)\\ A=3+2^2\cdot7+2^5\cdot7+...+2^{2010}\cdot7\\ A=3+7\cdot\left(2^2+2^5+...+2^{2010}\right)\\ \)

15 tháng 2 2017

Cô giải rồi lên đây giải làm j nữa.

12 tháng 3 2017

thiếu đề

17 tháng 2 2017

Ta có : \(\left\{\begin{matrix}Q=-\left(x-7\right)^2-6\\-\left(x-7\right)^2\le0\\-6=-6\end{matrix}\right.\)

\(\Rightarrow Q=-\left(x-7\right)^2-6\le0-6=-6\)

Vậy GTLN của \(Q=-\left(x-7\right)^2-6\)\(-6\)

15 tháng 2 2017

\(A=\frac{-x^2-2x-5}{x^2+2x+2}=\frac{-\left(x^2+2x+1\right)-4}{\left(x^2+2x+1\right)+1}=\frac{-\left(x+1\right)^2-4}{\left(x+1\right)^2+1}=\frac{-\left(x+1\right)^2-1-3}{\left(x+1\right)^2+1}=\frac{-\left[\left(x+1\right)^2+1\right]-3}{\left(x+1\right)^2+1}=-1-\frac{3}{\left(x+1\right)^2+1}\)Để \(-1-\frac{3}{\left(x+1\right)^2+1}\) đạt GTLN <=> \(-\frac{3}{\left(x+1\right)^2+1}\) đạt GTLN

=> (x + 1)2 + 1 đạt GTNN

\(\left(x+1\right)^2\ge0\) với mọi x \(\in R\)

=> \(\left(x+1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> x = - 1

Vậy GTNN của A = - 1 - 3 = - 4 tại x = - 1

17 tháng 2 2017

Cảm ơn bạn nhiều!haha

20 tháng 8 2023

Đề bài đâu b?

5 tháng 2 2017

\(\sqrt{x^2}.\left|x+2\right|=x\)

\(\Rightarrow x.\left|x+2\right|=x\)

\(\Rightarrow\left|x+2\right|=1\)

\(\Rightarrow\left[\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\) \(\Rightarrow\)\(\left[\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

5 tháng 2 2017

Cảm ơn bạn nha!