K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a ) -36a2 + x2 + 4y2 - 4xy

= ( x2 - 4xy + 4y) - (6a)2

= ( x -2y )2 - (6a)2

= ( x - 2y - 6a ).(x - 2y + 6a )

b ) 10ax - 5ay +2x - y 

= ( 10ax - 5ay ) + ( 2x - y )

= 5a ( 2x - y ) + ( 2x - y )

= ( 2x - y ) . (5a + 1 ) 

c ) 2a2b(x + y) - 4ab2(-x - y )

= 2a2b( x+ y ) + 4ab2(x + y )

= 2ab(x + y ) ( a + 2b )

13 tháng 8 2021

a, \(-36a^2+x^2+4y^2-4xy=\left(x+2y\right)^2-\left(6a\right)^2=\left(x+2y-6a\right)\left(x+2y+6a\right)\)

b, \(10ax-5ay+2x-y=5a\left(2x-y\right)+2x-y=\left(5a+1\right)\left(2x-y\right)\)

c, \(2a^2b\left(x+y\right)-4ab^2\left(-x-y\right)=2a^2b\left(x+y\right)+4ab^2\left(x+y\right)\)

\(=\left(2a^2b+4ab^2\right)\left(x+y\right)=2ab\left(a+2b\right)\left(x+y\right)\)

21 tháng 8 2021

\(\left(x^3-x^2-5x+21\right):\left(x^2-4x+7\right)\)

\(=\left(x^3-4x^2+3x^2+7x-12x+21\right):\left(x^2-4x+7\right)\)

\(=\left[\left(x^3-4x^2+7x\right)+\left(3x^2-12x+21\right)\right]:\left(x^2-4x+7\right)\)

\(=\left[x\left(x^2-4x+7\right)+3\left(x^2-4x+7\right)\right]:\left(x^2-4x+7\right)\)

\(=\left[\left(x^2-4x+7\right)\left(x+3\right)\right]:\left(x^2-4x+7\right)\)

\(=x+3\)

21 tháng 8 2021

đầy đủ giúp em nhé

\(\left(x^3-6x^2+9x+14\right):\left(x-7\right)\)

\(=\left(x^3-7x^2+x^2-7x-2x+14\right):\left(x-7\right)\)

\(=[x^2\left(x-7\right)+x\left(x-7\right)-2\left(x-7\right)]:\left(x-7\right)\)

\(=\left(x-7\right)\left(x^2+x-2\right):\left(x-7\right)\)

\(=x^2+x-2\)

11 tháng 8 2021

gi 9x46

15 tháng 12 2022

Bài 1:

a: x^3-6x^2+12x-7=0

=>x^3-x^2-5x^2+5x+7x-7=0

=>(x-1)(x^2-5x+7)=0

=>x=1

b: \(x\left(4x-5\right)-\left(2x+1\right)^2=0\)

=>4x^2-5x-4x^2-4x-1=0

=>-9x-1=0

=>9x+1=0

=>x=-1/9

11 tháng 9 2016

a)4x3y-6xy2

=2xy(2x2-3y)

b)4x2-4x+1

=(2x)2-2*2x*1+12

=(2x-1)2

c)x​2-2xy-3x+6y

=x(x-2y)-3(x-2y)

=(x-3)(x-2y)

d)x​3-2x2+x-xy2

=x(x2-2x+1-y2)

=x[(x-1)2-y2]

=x(x-y-1)(x+y-1)

e)x2-x+y2-y-x2y​2+xy

=xy2-x+y2-y-x2y2+x2-xy2+xy

=(xy2-x+y2-y)-x(xy2-x+y2-y)

=(1-x)(xy2-x+y2-y)

=(1-x)[xy2+xy+y2-(xy+y+x)]

=(1-x)[y(xy+y+x)-(xy+y+x)]

=(1-x)(y-1)(xy+y+x)

Bài 2:

a)x(x-y)+y(y-x)

=x2-xy+y2-xy

=(x-y)2.Tại x=53 và y=3 ta có:

N=(53-3)2=502=2500

b) x2013-53x2012+103x2011-51x2010

=x2010(x3-53x2+103x-51)

=x2010[x3-2x2+x-51x2+102x-51]

=x2010[x(x2-2x+1)-51(x2-2x+1)]

=x2010(x-51)(x2-2x+1).Tại x=51 ta có:

M=512010(51-51)(512-2*51+1)=0

Đề bài 1???

20 tháng 3 2020

Bài 1 phân tích đa thức thành nhân tử

2 tháng 9 2021

Đầy đủ giúp em nhé

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

17 tháng 7 2017

a) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)

                  \(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

                  \(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)

b) sửa đề nhé!

\(6x-9-x^2=-\left(x^2-6x+9\right)\)

                       \(=-\left(x-3\right)^2\)