K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

Câu 2: 

Ta có: \(\sqrt{x^2-4x+4}=x-1\)

\(\Leftrightarrow2-x=x-1\left(x< 2\right)\)

\(\Leftrightarrow-2x=-3\)

hay \(x=\dfrac{3}{2}\left(tm\right)\)

13 tháng 4 2022

Giusp mình với mọi người ơi!!!

 

a: Khi x=2 thì (1) sẽ là:

4-2(m+2)+m+1=0

=>m+5-2m-4=0

=>1-m=0

=>m=1

x1+x2=m+1=3

=>x2=3-2=1

b: Δ=(m+2)^2-4(m+1)

=m^2+4m+4-4m-4=m^2>=0

=>Phương trình luôn có hai nghiệm

P=(x1+x2)^2-4x1x1+3x1x2

=(x1+x2)^2-x1x2

=(m+2)^2-m-1

=m^2+4m+4-m-1

=m^2+3m+3

=(m+3/2)^2+3/4>=3/4

Dấu = xảy ra khi m=-3/2

a: góc AED+góc AFD=180 độ

=>AEDF nội tiếp

=>góc AEF=góc ADF=góc C

=>góc FEB+góc FCB=180 độ

=>FEBC nội tiếp

b: Xét ΔGBE và ΔGFC có

góc GBE=góc GFC

góc G chung

=>ΔGBE đồng dạng với ΔGFC

=>GB/GF=GE/GC

=>GB*GC=GF*GE

17 tháng 9 2021

Gọi tam giác ABC vuông tại A, trung tuyến AM, đường cao AH

\(\Rightarrow AM=5\left(cm\right);AH=4\left(cm\right)\)

Ta có AM là trung tuyến ứng với cạnh huyền BC

\(\Rightarrow BC=2AM=10\left(cm\right)\)

Áp dụng HTL tam giác \(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=40\Rightarrow AB=\dfrac{40}{AC}\\ \dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{16}=\dfrac{1}{\dfrac{1600}{AC^2}}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{AC^4+1600}{1600AC^2}=\dfrac{100AC^2}{1600AC^2}\Rightarrow AC^4-100AC^2+1600=0\\ \Rightarrow\left(AC^2-80\right)\left(AC^2-20\right)=0\\ \Rightarrow\left[{}\begin{matrix}AC^2=80\\AC^2=20\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}AC=4\sqrt{5}\left(AC>0\right)\\AC=2\sqrt{5}\left(AC>0\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}AB=2\sqrt{5}\\AB=4\sqrt{5}\end{matrix}\right.\)

Vậy với AB là cạnh góc vuông lớn thì \(\left(AB;AC;BC\right)=\left(4\sqrt{5};2\sqrt{5};10\right)\)

 

17 tháng 9 2021

Em cần cả hình vẽ lẫn lời giải luôn nha :3

22 tháng 8 2021

Với \(x\ge0;x\ne\pm16\)

\(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\)

\(=\left(\frac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\right):\frac{x+16}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{x-16}\)