Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=.....
=\(7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+....+\frac{1}{69.70}\right)=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+.....+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
MẤY PHẦN SAU CX TÁCH MẪU RA RÙI LÀM NHƯ VẬY
TỰ LÀM NHE
\(B=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+...+\frac{1}{30\cdot33}\)
\(B=\frac{1}{3}\cdot\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+...+\frac{3}{30\cdot33}\right)\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(B=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)
\(C=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(C=\left(1-\frac{1}{1\cdot2}\right)+\left(1-\frac{1}{2\cdot3}\right)+...+\left(1-\frac{1}{9\cdot10}\right)\)
\(C=9-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\right)\)
\(C=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(C=9-\left(1-\frac{1}{10}\right)\)
\(C=9-\frac{9}{10}=\frac{81}{10}\)
\(7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\\ 7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+....+\frac{1}{69}-\frac{1}{70}\right)\\ 7.\left(\frac{1}{10}-\frac{1}{70}\right)\\ 7.\frac{6}{70}=\frac{3}{5} \)
thôi chịu nhiều quá ai mà làm đc tự đi mà làm hỏi thì hỏi thì hỏi ít thôi người ta còn trả lời đc .
Ta có: \(A=1-2+3-4+5-6+7-8+9\)
\(=(1+9)-(2+8)+(3+7)-(4+6)+5\)
\(=10-10+10-10+5\)
\(=5\)
Vậy \(A=5\)
B = 12 - 14 + 16 - 18 + ... + 2008 - 2010
B = -2 + (-2)+ (-2)+ (-2) + ...+ (-2)
B = -2 . 100
B = -200
3N = 1.2.3+2.3(4-1)+3.4.(5-2)+.+99.100.(101-98)
3N = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.+99.100.101-98.99.100
3N = 99.100.101
3N=33.100.101=333300
b)
tổng này có 99-10+1=90 (số hạng):
10,11 + 11,12 + 12,13 +............+ 98,99 + 99,100 =
10,100 + 11,11 + 12,12 + .......... + 98,98 + 99,99 =
(10,10 + 99,99) x 90 : 2 = 4954,05
c)
R=1.(2-1)+2.(3-1)+.....+100.(101-1)
=1.2-1.1+2.3-1.2+......+100.101-1.100
=(1.2+2.3+.....+99.100+100.101)-(1+2+3+...+100)
=[1.2.3+2.3.(4-1)+........100.101.(102-99)]:3+[(100+1).100:2]
(tổng trên chia cho 3 nên cuối cùng chia 3)
=(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....100.101.102-99.100.101):3+5050
=(100.101.102) :3 +5050
=348450
d)=1.100+2.(100-1)+.....+100.(100-99)
=1.100+2.100-1.2+3.100-2.3+........+100.100-99.100
=100.(1+2+3+.......+100)-(1.2+2.3+3.4+....+99.100)
=100.\(\frac{101.100}{2}-\frac{99.100.101}{3}\) =505000-333300=171700
p/s mỏi tay, bấm mình nhé
1) A=7/10.11+7/11.12+7/12.13+...+7/69.70
A=7.(1/10.11+1/11.12+1/12.13+...+1/69.70)
A= 7.(1/10-1/11+1/11-1/12+1/12-1/13+...+1/69-1/70)
A= 7.(1/10-1/70)
A=7.3/35=3/5
2)B=1/25.27+1/27.29+1/29.31+...+1/73.1/75
B=1/25-1/27+1/27-1/29+1/29-1/31+...+1/73-1/75
B=1/25-1/75=2/75
A = 7/ 10.11 + 7/ 11.12 + 7/ 12.13 + .... + 7/69.70
(1/7).A=1/10.11+1/11.12+...+1/69.70
=1/10-1/11+1/11-1/12+...+1/69-1/70
=1/10-1/70=3/35
=>A=7.(3/35)
=3/5
2 ) B = 1/ 25.27 + 1/ 27.29 + 1/29.31+ ......+ 1/ 73.75
=>(1/2).B=2/25.27+...+2.73.75
=1/25-1/27+...+1/73-1/75
=1/25-1/75
=2/75
=>B=4/75
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2023\cdot2024}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(=1-\dfrac{1}{2024}=\dfrac{2023}{2024}\)
\(B=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{85\cdot89}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{85}-\dfrac{1}{89}\)
\(=1-\dfrac{1}{89}=\dfrac{88}{89}\)
\(C=\dfrac{7}{10\cdot11}+\dfrac{7}{11\cdot12}+...+\dfrac{7}{69\cdot70}\)
\(=7\left(\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}+...+\dfrac{1}{69\cdot70}\right)\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=7\cdot\dfrac{6}{70}=\dfrac{42}{70}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(D=\dfrac{1}{18}+\dfrac{1}{54}+...+\dfrac{1}{990}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{33}\right)=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2023\cdot2024}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(=1-\dfrac{1}{2024}\)
\(=\dfrac{2023}{2024}\)
\(B=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{85\cdot89}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{85}-\dfrac{1}{89}\)
\(=1-\dfrac{1}{89}\)
\(=\dfrac{88}{89}\)
\(C=\dfrac{7}{10\cdot11}+\dfrac{7}{11\cdot12}+...+\dfrac{7}{69\cdot70}\)
\(=7\left(\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}+...+\dfrac{1}{69\cdot70}\right)\)
\(=7\cdot\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(=7\cdot\left(\dfrac{1}{10}-\dfrac{1}{70}\right)\)
\(=7\cdot\dfrac{6}{70}\)
\(=\dfrac{3}{5}\)
\(D=\dfrac{1}{18}+\dfrac{1}{54}+...+\dfrac{1}{990}\)
\(=\dfrac{1}{3\cdot6}+\dfrac{1}{6\cdot9}+\dfrac{1}{9\cdot12}+...+\dfrac{1}{30\cdot33}\)
\(=\dfrac{1}{3}\cdot\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{6}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\left(\dfrac{1}{3}-\dfrac{1}{33}\right)\\ =\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)