K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2022

b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

pt luôn có 2 nghiệm phân biệt

c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)

\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)

(số bình phương luôn lớn hơn bằng 0) với mọi n

4 tháng 2 2022

2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

Vậy pt luôn có 2 nghiệm pb 

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)

Vì x1 là nghiệm của pt trên nên ta được 

\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)

Thay vào ta được 

\(2nx_1-x_1-n^2+n-2x_2+3\)

bạn kiểm tra lại đề nhé 

10 tháng 5 2018

a) \(\Delta\)= b2-4ac=\([-2\left(m-1\right)\)2-4.1.(m-3)

                           =4(m2-2m+1)-4m+12

                                =4m2-12m+16=(2m-3)2+7>0

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

b)Vì pt luôn có 2 nghiệm phân biệt với m

Theo vi ét ta có:x1+x2=\(\frac{-b}{a}\)= 2m-2=S (1)

                     x1.x2=\(\frac{c}{a}\)=m-3=P (2)

Từ(1)\(\Rightarrow2m=S+2\)

          \(\Rightarrow m=\frac{S+2}{2}\left(3\right)\)

Từ(2)\(\Rightarrow m=P-3\left(4\right)\)

Từ (3) và(4)\(\Rightarrow\frac{S+2}{2}=P-3\)

               \(\Leftrightarrow S+2-2P+6=0\)

               \(\Leftrightarrow S-P+8=0\)

Do đó\(\Leftrightarrow\left(x_1+x_2\right)-\left(x._1.x_2\right)+8=0\left(đfcm\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2017

Lời giải:

a) Với \(m=0\) phương trình trở thành:

\((x^2-2x-3)(x^2-2x+3)=0\Leftrightarrow (x-3)(x+1)(x^2-2x+3)=0\)

\(\Rightarrow\left[\begin{matrix}x-3=0\\x+1=0\\x^2-2x+3=0\end{matrix}\right.\) \(\Leftrightarrow \) \(\left[\begin{matrix}x=3\\x=-1\\\left(x-1\right)^2+2=0\left(vl\right)\end{matrix}\right.\)

Vậy \(x\in \left\{-1,3\right\}\)

b) Để PT có $4$ nghiệm phân biết thì phương trình \(x^2-2x+2m+3=0\) phải có hai nghiệm phân biệt khác \(-1\)\(3\)

Tức là \(\left\{\begin{matrix} \Delta' =1-(2m+3)>0\\ 3^2-2.3+2m+3\neq 0\\ (-1)^2-2(-1)+2m+3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m<-1\\ m\neq -3\\ \end{matrix}\right.\)

c) Áp dụng định lý Viet cho PT \(x^2-2x+2m+3=0\) có nghiệm thỏa mãn:\(\left\{\begin{matrix}x_3+x_4=2\\x_3x_4=2m+3\end{matrix}\right.\)

\(A=x_1x_2x_3x_4=-3x_3x_4=-3(2m+3)\)

Ta có với mọi \(x_3,x_4\in\mathbb{R}\) thì đều có \(x_3x_4\leq \left(\frac{x_3+x_4}{2}\right)^2=1\)

\(\Rightarrow -3x_3x_4\geq -3\) (khi nhân với số âm thì đổi dấu)

\(\Rightarrow A_{\min }=-3\Leftrightarrow m=-1\)

Câu b với c không liên quan đến nhau phải không? Nếu không thì không tìm được min đâu.

28 tháng 2 2017

sửa đề: pt \(\left(x^2-2x-3\right)\left(x^2-2x+2m+3\right)=0\)

4 tháng 4 2020
https://i.imgur.com/mGWXjaQ.jpg
4 tháng 4 2020
https://i.imgur.com/4rWLFSw.jpg
4 tháng 12 2017

\(x^2-2\left(m+1\right)x+2m-2=0\) với x là ẩn số

a) Ta có : \(\Delta'=\left(m+1\right)^2-1\left(2m-2\right)\)

= \(m^2+2m+1-2m+2\)

= \(m^2+3\) > 0 Với \(\forall m\in R\)

\(\Delta'>0\) nên phương trình luôn có 2 nghiệm phân biệt .

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

12 tháng 7 2020

a,Với \(m=2\)thì phương trình trên tương đương với :

\(x^2-4x-4+12-5=0\)

\(< =>x^2-4x+3=0\)

Ta dễ dàng nhận thấy : \(1-4+3=0\)

Nên phương trình sẽ có 2 nghiệm phân biệt là \(\hept{\begin{cases}x_1=1\\x_2=3\end{cases}}\)

b,Để phương trình luôn có nghiệm : \(\Delta\ge0\)

\(< =>\left(-4\right)^2-4\left(-m^2+6m-5\right)\ge0\)

\(< =>16+4m^2-24m+20\)

\(< =>\left(2m\right)^2-2.2.m.6+6^2=\left(2m-6\right)^2\ge0\)(đúng)

c,Theo bất đẳng thức AM-GM thì :

\(x_1^3+x_2^3\ge2\sqrt[2]{x_1^3x_2^3}=2x_1x_2\)

Nên ta được : \(P\ge2x_1x_2\)

Mặt khác theo hệ thức Vi ét thì : \(x_1x_2=-m^2+6m-5\)

\(< =>P\ge-2m^2+12m-10\)

\(< =>P\ge-\left(\sqrt{2}m\right)^2+2\left(-\sqrt{2}m\right)\left(-\sqrt{18}\right)+\left(-\sqrt{18}\right)^2\)

\(< =>P\ge\left[-\sqrt{2}m.\left(-\sqrt{18}\right)\right]^2-28\)

Đẳng thức xảy ra khi  và chỉ khi \(m=0\)

Vậy \(Min_P=-28\)khi \(m=0\)

12 tháng 7 2020

x2 - 4x - m2 + 6m - 5 = 0

Với m = 2 ta có :

x2 - 4x - m2 + 6m - 5 = 0

<=> x2 - 4x - 22 + 2.6 - 5 = 0

<=> x2 - 4x - 4 + 12 - 5 = 0

<=> x2 - 4x + 3 = 0

\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot3=16-12=4\)

\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{4}}{2}=3\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{4}}{2}=1\)