K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2019

Gọi M là trung điểm AB \(\Rightarrow M\left(\frac{3}{2};\frac{7}{2}\right)\)

d cách đều A, B \(\Rightarrow M\in d\)

Thay tọa độ M lần lượt vào 4 pt thấy chỉ có đáp án A đúng \(\Rightarrow A\)

16 tháng 4 2019

bạn ơi cách làm của bạn chỉ đúng khi làm trách nghiệm, vì bạn mới xét trường hợp đường thẳng cách đều khi A và B nằm ở 2 bờ mp là đường thẳng, bạn quên chưa xét A và B nằm cùng phía đối với đường thẳng

6 tháng 12 2019

Chọn A.

Tọa độ giao điểm của hai đường thẳng x + y - 5 = 0 và 2x - 3y + 5 = 0 là nghiệm của hệ phương trình:

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 1)

a) Tìm tất cả các giá trị của tham số m đẻ khoảng cách từ giao điểm của hai đường thẳng  \(d_1:\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\) và \(d_2:x-2y+m=0\) đến gốc tọa độ bằng 2      b) Trong mp xOy cho hai điểm A(2;3) B(1;4)  . Đường thẳng cách đều hai điểm là             c)    Trong mp xOy cho hai điểm A(0;1) B(12;5)  C(-3;0). Đường thẳng cách đều ba điểm là                 ...
Đọc tiếp

a) Tìm tất cả các giá trị của tham số m đẻ khoảng cách từ giao điểm của hai đường thẳng  \(d_1:\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\) và \(d_2:x-2y+m=0\) đến gốc tọa độ bằng 2     

b) Trong mp xOy cho hai điểm A(2;3) B(1;4)  . Đường thẳng cách đều hai điểm là            

c)    Trong mp xOy cho hai điểm A(0;1) B(12;5)  C(-3;0). Đường thẳng cách đều ba điểm là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

1
NV
30 tháng 3 2021

Gọi giao điểm là A, thay tọa độ tham số d1 vào d2:

\(t-2\left(2-t\right)+m=0\Leftrightarrow3t+m-4=0\Rightarrow t=\dfrac{-m+4}{3}\)

\(\Rightarrow A\left(\dfrac{-m+4}{3};\dfrac{m+2}{3}\right)\)

\(\Rightarrow OA=\sqrt{\left(\dfrac{-m+4}{3}\right)^2+\left(\dfrac{m+2}{3}\right)^2}=2\)

\(\Leftrightarrow m^2-2m-8=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

b. Bạn không đưa 4 đáp án thì không ai trả lời được câu hỏi này. Có vô số đường thẳng cách đều 2 điểm, chia làm 2 loại: các đường thẳng song song với AB và các đường thẳng đi qua trung điểm của AB

c. Tương tự câu b, do 3 điểm ABC thẳng hàng nên có vô số đường thẳng thỏa mãn, là các đường thẳng song song với AB

30 tháng 3 2021

b) 

A. x-y+2=0

B. x+2y=0

C.2x-2y+10=0

D. x-y+100=0

c)

A. x-3y+4=0

B. -x+y+10=0

C. x+y=0

D. 5x-y+1=0

4 tháng 2 2017

Gọi M( x; y) là giao điểm của 2 đường thẳng (a) và (b) ( nếu có).

Khi đó; tọa độ điểm M là nghiệm hệ phương trình:

FVJTJ31WhINe.png

Vậy tọa độ giao điểm của 2 đường thẳng đã cho là : M( 1; -1)

Chọn C.

NV
24 tháng 2 2021

Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)

\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)

\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)

\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:

\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn

35. Trong mặt phẳng tọa độ Oxy , cho hình bình hành ABCD có A(4;-1) , phương trình CD : 2x + 5y +6=0. Viết phương trình cạnh AB. A. 2x + 5y +3=0 B. 2x +5y -3 =0 C. 4x -y-3=0 D. 2x -5y-3=0 36. Trong mặt phẳng tọA độ Oxy , lập phương trình tổng quát của đg thẳng d , biết d đi qua A(1;3) và song song với trục hoành. A. x=1 B. y=3 C. x=3 D. y=1 37. Trong mặt phẳng tọa độ Oxy , viết phương trình tổng quát của đg...
Đọc tiếp

35. Trong mặt phẳng tọa độ Oxy , cho hình bình hành ABCD có A(4;-1) , phương trình CD : 2x + 5y +6=0. Viết phương trình cạnh AB.

A. 2x + 5y +3=0

B. 2x +5y -3 =0

C. 4x -y-3=0

D. 2x -5y-3=0

36. Trong mặt phẳng tọA độ Oxy , lập phương trình tổng quát của đg thẳng d , biết d đi qua A(1;3) và song song với trục hoành.

A. x=1

B. y=3

C. x=3

D. y=1

37. Trong mặt phẳng tọa độ Oxy , viết phương trình tổng quát của đg thẳng d , biết rằng d vuông góc với trục hoành đồng thời đi qua A(1;3)

A. y=30

B. y=1

C. x=3

D. x=1

38. Cho 2 đg thẳng d1 : 2x+y-7=0 và d2 : x=-1 + 3t và y=2 + t. Giao điểm của 2 đg thẳng d1 và d2 có tọa độ A(m;n). Tính giá trị P = 2m + n.

A.6

B. 7

C. 8

D.9

39. Trong mặt phẳng tọa độ Oxy , cho điểm M(3;1). Viết phương trình đg thẳng đi qua M và cắt các tia Ox và Oy lần lượt tị A và B sao cho M là trung điểm của AB.

A. 3x + y -10=0

B. x- 3y =0

C. 3x - y -8 = 0

D. x + 3y - 6=0

40. Trong mặt phẳng tọa độ Oxy , tìm hình chiếu N của điểm M (2;-5) lên đg thẳng d : x = -7 + 3t và y = 2 - 4t

A. N( -2/5 ; -34/5)

B. N(2/5 ; 34/5)

C. (-2;-34)

D. ( 2 ;34)

2
NV
10 tháng 4 2020

Bài 38:

Thay phương trình d2 vào d1 ta được:

\(2\left(-1+3t\right)+\left(2+t\right)-7=0\)

\(\Leftrightarrow7t-7=0\Rightarrow t=1\)

\(\Rightarrow\left\{{}\begin{matrix}m=-1+3t=2\\n=2+t=3\end{matrix}\right.\)

\(\Rightarrow P=7\)

Bài 39:

Gọi tọa độ A(a;0) và tọa độ B(0;b)

Do M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}\frac{a+0}{2}=3\\\frac{b+0}{2}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(6;0\right)\\B\left(0;2\right)\end{matrix}\right.\)

Phương trình AB: \(\frac{x}{6}+\frac{y}{2}=1\Leftrightarrow x+3y-6=0\)

Bài 40:

d có 1 vtcp là \(\left(3;-4\right)\)

Gọi d' là đường thẳng qua M và vuông góc d \(\Rightarrow\) d' có 1 vtpt là \(\left(3;-4\right)\)

Phương trình d':

\(3\left(x-2\right)-4\left(y+5\right)=0\Leftrightarrow3x-4y-26=0\)

N là giao của d và d' nên tọa độ N thỏa mãn:

\(3\left(-7+3t\right)-4\left(2-4t\right)-26=0\Rightarrow t=\frac{11}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x_N=-7+3t=-\frac{2}{5}\\y_N=2-4t=-\frac{34}{5}\end{matrix}\right.\) \(\Rightarrow N\left(-\frac{2}{5};-\frac{34}{5}\right)\)

NV
10 tháng 4 2020

Bài 35:

Do \(AB//CD\) nên đường thẳng AB nhận \(\left(2;5\right)\) là 1 vtpt

Phương trình AB:

\(2\left(x-4\right)+5\left(y+1\right)=0\Leftrightarrow2x+5y-3=0\)

Bài 36:

Do đường thẳng song song trục hoành nên có dạng \(y=a\)

Do đường thẳng qua A(1;3) nên pt là \(y=3\)

Bài 37:

Do thẳng thẳng vuông góc trục hoành nên có dạng \(x=a\)

Đường thẳng qua A(1;3) nên có pt: \(x=1\)

NV
1 tháng 4 2019

1/ Gọi phương trình \(\Delta:ax+by+c=0\)

Do \(M\in\Delta\Rightarrow a+2b+c=0\Rightarrow c=-a-2b\)

\(\Rightarrow\Delta:ax+by-a-2b=0\)

Gọi A là giao của \(\Delta\) và Ox: \(A\left(\frac{a+2b}{a};0\right)\)

Gọi B là giao của \(\Delta\) và Oy \(\Rightarrow B\left(0;\frac{a+2b}{b}\right)\)

Do M là trung điểm AB \(\Rightarrow\overrightarrow{AM}=\overrightarrow{MB}\)

\(\Rightarrow\left(1-\frac{a+2b}{a};2\right)=\left(-1;\frac{a-2b}{b}-2\right)\Rightarrow\left\{{}\begin{matrix}1-\frac{a+2b}{a}=-1\\\frac{a+2b}{b}-2=2\end{matrix}\right.\) \(\Rightarrow a=2b\)

Phương trình \(\Delta:2bx+by-2b-2b=0\)

\(\Leftrightarrow2x+y-4=0\)

NV
1 tháng 4 2019

2/

\(\overrightarrow{IM}=\left(3;-3\right)\)\(IM\perp BC\) \(\Rightarrow\) phương trình BC:

\(1\left(x-0\right)-1\left(y+3\right)=0\Leftrightarrow x-y-3=0\Rightarrow B\left(b;b-3\right)\)

Trên tia đối của tia IA lấy D sao cho \(ID=IA\Rightarrow AD\) là đường kính đường tròn ngoại tiếp tứ giác ABDC

H là trực tâm \(\Rightarrow BH\perp AC\), mà \(CD\perp AC\) (\(\widehat{ACD}\) nội tiếp chắn nửa đường tròn) \(\Rightarrow BH//CD\)

Chứng minh tương tự ta có \(CH//BD\Rightarrow BHCD\) là hbh

BC, HD là 2 đường chéo của hbh, mà M là trung điểm BC \(\Rightarrow M\) là trung điểm HD

Trong tam giác AHD, có M là trung điểm HD, I là trung điểm AD \(\Rightarrow IM\) là đường trung bình \(\Rightarrow\overrightarrow{IM}=\frac{1}{2}\overrightarrow{AH}\)

\(\Rightarrow\overrightarrow{AH}=\left(6;-6\right)\Rightarrow A\left(-7;10\right)\)

M là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_M-x_B=-b\\y_C=2y_M-y_B=-b-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(b+7;b-13\right)\\\overrightarrow{CH}=\left(b-1;b+7\right)\end{matrix}\right.\)

\(\overrightarrow{AB}.\overrightarrow{CH}=0\Rightarrow\left(b+7\right)\left(b-1\right)+\left(b-13\right)\left(b+7\right)=0\)

\(\Rightarrow\left(b+7\right)\left(2b-14\right)=0\Rightarrow\left[{}\begin{matrix}b=7\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}B\left(7;4\right);C\left(-7;-10\right)\\B\left(-7;-10\right);C\left(7;4\right)\end{matrix}\right.\)