K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

\(\Leftrightarrow\frac{\left(x+1\right)+a\left(b+1\right)}{\left(a+1\right)}+\frac{\left(x+1\right)+c\left(b+1\right)}{\left(c+1\right)}+\frac{\left(x+1\right)+b\left(b+1\right)}{\left(b+1\right)}=3\left(b+1\right)\)

\(\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\left(x+1\right)=\left(b+1\right)\left(3-\frac{a}{a+1}-\frac{b}{b+1}-\frac{c}{c+1}\right)\)

\(\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\left(x+1\right)=\left(b+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=A=0\) pt N0 đúng mọi x. thuộc R

Nếu A khác 0 pt có nghiệm duy nhất x=b

24 tháng 2 2016

Điều kiện

\(x+1\ne0\Leftrightarrow x\ne-1\) (*)

Với điều kiện đó

* Nếu \(m=1\) thì phương trình vô nghĩa, do đó vô nghiệm

* Nếu \(m\ne1\) thì 

\(\frac{x-3}{m-1}=\frac{1}{x+1}\Leftrightarrow\left(x-3\right)\left(x+1\right)=m-1\Leftrightarrow f\left(x\right):=x^2-2x-m-2=0\)

Phương trình bậc hai \(x^2-2x-m-2=0\) có \(\Delta'=m+3\). Xét các trường hợp sau :

* Nếu \(\Delta'<0\)   

hay \(m<-3\) 

thì \(x^2-2x-m-2=0\) vô nghiệm

* Nếu \(\Delta'\ge0\)   

hay \(m\ge-3;m\ne1\) 

thì \(x^2-2x-m-2=0\)  có hai nghiệm

\(x_{1;2}=1\pm\sqrt{m+3}\)

Do \(m\ne1\) nên \(f\left(-1\right)=\left(-1\right)^2-2\left(-1\right)-m-2=1-m\ne0\) 

hay là với mọi \(m\ne1\),

phương trình  \(x^2-2x-m-2=0\) 

không có nghiệm \(x=-1\)

Nói cách khác, hai nghiệm \(x_{1;2}\) cùng thỏa mãn điều kiện (*). Ta có kết luận :

- Khi \(m<-3\) hoặc \(m=1\) Phương trình vô nghiệm

-  Khi \(m\ge-3\) hoặc \(m\ne1\) Phương trình co hai nghiệm \(x=1\pm\sqrt{m+3}\)

24 tháng 2 2016

khó quá, đề có vấn đề k v