K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

Ta có :

\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)x=\left(m+2\right)^2\)

- Nếu \(m\ne\pm2\) thì \(x=\frac{m+2}{m-2}\)

- Nếu \(m=2\) thì \(0x=16\)

=> P/trình vô nghiệm . 

- Nếu \(m=-2\) thì \(0x=0\)

=> PT có nghiệm bất kì 

.....

2 tháng 3 2018

bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt

2 tháng 3 2018

Ko có bạn ơi :<

24 tháng 12 2018

ta có : \(\left(m^2+1\right)x^2-\left(2-m\right)=0\Rightarrow2-m=\left(m^2+1\right)x^2\ge1\)

VẬY PT CÓ NGHIỆM KHI  \(2-m\ge1\Leftrightarrow m\le1\).

\(\Rightarrow x^2=\frac{2-m}{m^2+1}\Leftrightarrow x=\sqrt{\frac{2-m}{m^2+1}}\)hoặc x=\(-\sqrt{\frac{2-m}{m^2+1}}\)

21 tháng 12 2022

a: Khi a=2 thì hệ sẽ là 3x-y=3 và x+y=2

=>x=5/4 và y=2-x=3/4

b: Để hệ có nghiệm duy nhất thì \(\dfrac{a+1}{1}< >\dfrac{-1}{a-1}\)

=>a^2-1<>-1

=>a^2<>0

=>a<>0

Để hệ phương trình có vô số nghiệm thì \(\dfrac{a+1}{1}=\dfrac{-1}{a-1}=\dfrac{a+1}{2}\)

=>a^2-1=-1 và a+1=0

=>a=0 và a=-1(loại)

Để hệ vô nghiệm thì \(\dfrac{a+1}{1}=\dfrac{-1}{a-1}< >\dfrac{a+1}{2}\)

=>a^2-1=-1 và 2a+2<>a+1

=>a=0