K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow-m^2+m+2mx-2=x^2-1\)

\(\Leftrightarrow x^2-1+m^2-m-2mx+2=0\)

\(\Leftrightarrow x^2-2mx+m^2-m+1=0\)

\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-m+1\right)\)

=4m-4

Để phương trình có hai nghiệm phân biệt thì 4m-4>0

hay m>1
Để phương trình có nghiệm kép thì 4m-4=0

hay m=1

Để phương trình vô nghiệm thì 4m-4<0

hay m<1

14 tháng 1 2016

điên à

 

Trường hợp 1: m=0

=>Phương trình sẽ là -3=0(vô lý)

Trường hợp 2: m<>0

\(\Delta=\left(-2m\right)^2-4\cdot m^2\cdot\left(-3\right)=4m^2+12m^2=16m^2>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Vậy Phương trình có hai nghiệm hai nghiệm phân biệt khi m<>0

19 tháng 5 2022

Trường hợp 1: m=0

=>Phương trình sẽ là -3=0(vô lý)

Trường hợp 2: m<>0

Δ=(−2m)2−4⋅m2⋅(−3)=4m2+12m2=16m2>0Δ=(−2m)2−4⋅m2⋅(−3)=4m2+12m2=16m2>0

Do đó: Phương trình luôn có hai nghiệm phân biệt

Vậy Phương trình có hai nghiệm hai nghiệm phân biệt khi m<>0

9 tháng 11 2018

thấy x bật nhất thì dùng biện luận theo kiểu bật nhất

thấy x bật 2 thì dùng denta

19 tháng 11 2022

a: =>x(m-2)(m+2)=-m+2

Để phương trình có nghiệm duy nhất thì (m-2)(m+2)<>0

=>m<>2; m<>-2

Đểphương trình vô nghiệm thì m+2=0

=>m=-2

Để phương trình có vô số nghiệm thì m-2=0

=>m=2

b: \(\Leftrightarrow x\left(m^2-16\right)=4m\)

Để phương trình có nghiệm duy nhất thì m^2-16<>0

hay \(m\notin\left\{4;-4\right\}\)

Để phương trình vô nghiệm thì m^2-16=0

=>m=4 hoặc m=-4

c: TH1: m=3

Pt sẽ là 4x-2=0

=>x=1/2

TH2: m<>3

\(\text{Δ}=4^2-4\cdot\left(-2\right)\cdot\left(m-3\right)\)

=16+8(m-3)

=8m-24+16=8m-8

Để phương trình vô nghiệm thì 8m-8<0

=>m<1

Để phương trình có nghiệm duy nhất thì 8m-8=0

=>m=1
Để phương trình có hai nghiệm phân biệt thì 8m-8>0

=>m>1

d: \(\text{Δ}=\left(-5\right)^2-4\left(2m-1\right)\)

=25-8m+4

=-8m+29

Để phương trình vô nghiệm thì -8m+29<0

=>-8m<-29

=>m>29/8

Để phương trình có nghiệm duy nhất thì -8m+29=0

=>m=29/8

Để phương trình có hai nghiệm phân biệt thì -8m+29>0

=>m<29/8

21 tháng 1 2016

2(m+1)x<= (m+1)^2(x-1) 
<=>(1-m^2)x <= -(m+1)^2 
m=1 => 0<= - 4 =>vô nghiệm 
m=-1 => 0<= 0 =>luôn thỏa với mọi x thuộc |R 
-1<m<1 => x <= (m+1)/(1-m) 
m<-1 hoặc m >1 => x >= (m+1)/(1-m)

vui