K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow x\left(m-2\right)>m^2-4\)

Để bất phương trình vô nghiệm thì m-2=0

hay m=2

Để bất phương trình có nghiệm thì m-2<>0

hay m<>2

14 tháng 1 2016

điên à

 

3 tháng 8 2016

+/ neu a khác 0 thi phuong trình có một nghiệm duy nhất x=-b/a 
+/ nếu a=0 va b khác 0 thi phương trình vô nghiệm 
a=0 va b=0 thi phuong trình có vô sô nghiệm 
VD: giai và biẹn luận phuong trình m^2(x-1)+m=x(3m-2) (1) (với m la tham số và x là ẩn) 
ta có phuong trinh(1) <=> m^2x-m^2+m-3mx+2x=0 
<=> x(m^2-3m+2)-m^2+m=0 (2) 
Nếu m^2-3m+2 khác 0 <=> m khác 2 và m khác 1=> phuong trình co nghiệm duy nhất 
x=m-m^2/m^2-3m+2 <=> x=m/m-2 
Nếu m^2-3m+2=0 <=> m=2 hoăcm=1 
vói m=2 thi phuong trình (2) trở thành 0x-2=0 => phương trình dã cho vô nghiệm 
với m=1 thi phwơng trình (2) trở thành 0x =0 => phương trình da cho có vô số nghiệm 

7 tháng 4 2017

\(\Leftrightarrow\left(m-2\right)x>m^2-4=\left(m-2\right)\left(m+2\right)\)

nếu m =2 => 0.x > 0.4 => vô nghiệm

Nếu m> 2 => m-2 >0 chia hai vế cho m-2<0

\(\Rightarrow x>m+2\)

Nếu m<2 => m-2 <0 chia hai cho m-2 <0

\(\Rightarrow x< m+2\)

Kết luận:

Nếu m =2 Phương trình vô nghiêm

nếu m> 2 có nghiệm: \(x>m+2\)

nếu m<2 có nghiệm: \(x< m+2\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
\(m^2(x-1)=mx-1\)

\(\Leftrightarrow m^2x-m^2=mx-1\)

\(\Leftrightarrow x(m^2-m)=m^2-1\)

\(\Leftrightarrow xm(m-1)=(m-1)(m+1)\)

+) Nếu $m=1$ thì $x.0=0$: PT có vô số nghiệm \(x\in\mathbb{R}\)

+) Nếu $m=0$ thì $x.0=-1$: PT vô nghiệm

+) Nếu $m\neq 1; m\neq 0$ thì PT có nghiệm duy nhất \(x=\frac{(m-1)(m+1)}{m(m-1)}=\frac{m+1}{m}\)