Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{mx+5}{10}\)+ \(\frac{x+m}{4}\)=\(\frac{m}{20}\)
\(\frac{2mx+10}{20}\)+ \(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)
2mx +10 + 5x +5m =m
x(2m+5)= -4m -10(1)
* 2m+5= 0 => m=-5/2
(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm
* 2m+5 \(\ne\)0=> m\(\ne\)-5/2
pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2
vậy với m=-5/2 phương trình đã cho vô số nghiệm
m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2
ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)
Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)
\(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)
Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x
Nếu \(a\ne b\)thì phương trình có nghiệm
\(\frac{2}{b-x}-\frac{1}{c-x}=0\)
\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)
\(\Rightarrow2c-2x-b+x=0\)
\(\Leftrightarrow-x=b-2c\)
\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)
Vậy ..............................................................................................
Câu 2:
a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)
\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)
Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)
hay \(a\in\left\{0;4;-4\right\}\)
Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)
hay \(a\notin\left\{0;4;-4\right\}\)
b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)
\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)
Để phương trình có vô số nghiệm thì m-1=0
hay m=1
Để phương trình vô nghiệm thì m+4=0
hay m=-4
Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0
hay \(m\in R\backslash\left\{1;-4\right\}\)
a) ĐKXĐ : \(x\ne5;x\ne-m\)
Khử mẫu ta được :
\(x^2-m^2+x^2-25=2\left(x+5\right)\left(x+m\right)\)
\(\Leftrightarrow-2x\left(m+5\right)=m^2+10m+25\)
\(\Leftrightarrow-2\left(m+5\right)x=\left(m+5\right)^2\)
Nếu m = -5 thì phương trình có dạng 0x = 0 ; PT này có nghiệm tùy ý. để nghiệm tùy ý này là nghiệm của PT ban đầu thì x \(\ne\pm5\)
Nếu m \(\ne-5\) thì PT có nghiệm \(x=\frac{-\left(m+5\right)^2}{2\left(m+5\right)}=\frac{-\left(m+5\right)}{2}\)
Để nghiệm trên là nghiệm của PT ban đầu thì ta có :
\(\frac{-\left(m+5\right)}{2}\ne-5\)và \(\frac{-\left(m+5\right)}{2}\ne-m\)tức là m \(\ne5\)
Vậy nếu \(m\ne\pm5\)thì \(x=-\frac{m+5}{2}\)là nghiệm của phương trình ban đầu
b) ĐKXĐ : \(x\ne2;x\ne m;x\ne2m\)
PT đã cho đưa về dạng x(m+2) = 2m(4-m)
Nếu m = -2 thì 0x = -24 ( vô nghiệm )
Nếu m \(\ne-2\)thì \(x=\frac{2m\left(4-m\right)}{m+2}\)( \(x\ne2;x\ne m;x\ne2m\) )
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2\) thì \(\left(m-1\right)\left(2m-4\right)\ne0\)hay \(m\ne1;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne m\)thì \(3m\left(m-2\right)\ne0\)hay \(m\ne0;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2m\)thì \(4m\left(m-1\right)\ne0\)hay \(m\ne0;m\ne1\)
Vậy khi \(m\ne\pm2\)và \(m\ne0;m\ne1\)thì PT có nghiệm \(x=\frac{2m\left(4-m\right)}{m+2}\)
a: =>x(a^2+b^2+2ab)=a+6
=>x(a+b)^2=a+6
TH1: a=-b và a=-6
=>PT có vô số nghiệm
TH2: a=-b và a<>-6
=>PTVN
TH3: a<>-b
=>PT có nghiệm duy nhất là x=(a+6)/(a+b)^2
b: TH1: a=1
=>PT có vô số nghiệm
TH2: a<>1
=>PT có nghiệm duy nhất là \(x=\dfrac{-3\left(a-1\right)}{a-1}=-3\)
d: =>x(m^2-1)=2m-2
=>x(m-1)(m+1)=2(m-1)
TH1: m=1
=>PT có vô số nghiệm
TH2: m=-1
=>PTVN
TH3: m<>1; m<>-1
=>PT có nghiệm duy nhất là x=2/(m+1)
có làm thì mới ra ko hỏi han nhìu
chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
bn hoang kim đừng cmt linh tinh nhé