Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-\left(3m-2\right)x+2m\left(m-2\right)<0\) (1)
Tam thức bậc hai ở (1) luôn có hai nghiệm \(x_1=2m\)
và \(x_2=m-2\) với mọi \(m\in R\) Từ đó ta có
- Khi 2m<m-2 hay m<-2 thì (1) có nghiệm 2m<x<m-2
- Khi 2m=m-2 hay m=-2 thì (1) vô nghiệm
- Khi 2m>m-2 hay m>-2 thì (1) có nghiệm m-2<x<2m
Lời giải
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)
(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)
\(\Leftrightarrow8x^2+14mx+3m^2=0\)
\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m
\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)
so sánh (3) với (1)
\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)
m <0 hiển nhiên đúng
xét khi m\(\ge\)0
\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)
Biện luận
(I)với m <0 có hai nghiệm
\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)
(II) với m= 0 có nghiệm kép x=0
(III) m>0 vô nghiệm
b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).
\(\left(m-1\right)x^2-2mx+3m-2>0\) (1)
- Nếu \(m=1\) thì (1) có dạng \(-2x+1>0\) nên có nghiệm \(x<\frac{1}{2}\)
- Nếu \(m\ne1\) thì (1) là bất phương trình bậc 2 với \(a=m-1\) và biệt thức \(\Delta'=-2m+5m-2\)
Trong trường hợp \(\Delta'\ge0\)
ta kí hiệu
\(x_1:=\frac{m-\sqrt{\Delta'}}{m-1}\) ; \(x_2:=\frac{m+\sqrt{\Delta'}}{m-1}\) \(d:=x_2-x_1=\frac{2\sqrt{\Delta'}}{m-1}\)
Lập bảng xét dấu ta được
+ Nếu \(m\le\frac{1}{2}\) thì \(a<0\) ; \(\Delta'\le0\)
nên (1) vô nghiệm
+ Nếu \(\frac{1}{2}\) <m< 1 thi a<0; \(\Delta'>0\)
\(d\ge0\) nên (1) \(\Leftrightarrow\) x<\(x_1\) hoặc \(x_2\)<x
+ Nếu m>2 thì a>0; \(\Delta'<0\)
nên (1) có tập nghiệm T(1)=R.
Ta có kết luận :
* Khi \(m\le\frac{1}{2}\) thì (1) vô nghiệm
* Khi \(\frac{1}{2}\) <m<1 thì (1) có nghiệm
\(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) <x<\(\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\)
* Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)
* Khi 1<m\(\le\) 2 thì (1) có tập nghiệm
T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)
* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)
Lời giải
a) \(\sqrt{\left(x-4\right)^2\left(x+1\right)}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne4\\x>-1\end{matrix}\right.\)
b) \(\sqrt{\left(x+2\right)^2\left(x-3\right)}>0\Rightarrow\left\{{}\begin{matrix}x\ne-2\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)
a) \(\left|2x-5m\right|=2x-3m\)
Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
Biện luận:
Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
Với m < 0 phương trình vô nghiệm.
b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
Biện luận:
Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).
lời giải
a)
\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)
\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)
\(\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)
\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)
c)Đkxđ: x≥0
x+√x>(2√x+3)(√x−1)
⇔x+√x>2x+√x−3
⇔x−3>0
⇔x>3. (tmđk).
\(\begin{cases}\left(x^2-1\right)\left(x-2\right)\ge0\\x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\end{cases}\) (1)
Xét các bất phương trình thành phần
\(\left(x^2-1\right)\left(x-2\right)\ge0\) (a)
\(x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\) (b)
Ta có T(1)=T(a)\(\cap\) T(b)
Lập bảng xét dấy
\(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)
x | -\(\infty\) -1 1 2 +\(\infty\) |
f(x) | - 0 + 0 - 0 + |
Từ bảng xét dấu ta được T(a) = \(\left[-1;1\right]\cup\left[2;+\infty\right]\)
Từ : \(x^2-\left(3a+1\right)x+a\left(2a+1\right)\) ta có các nghiệm x= a; x=2a+1
- Nếu \(a\le2a+1\Leftrightarrow a\ge-1\) thì T(b) = \(\left[a;2a+1\right]\)
Xét các trường hợp sau :
+ Trường hợp 1 :
\(\begin{cases}-1\le a\le1\\-1\le2a+1\le1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\0\le a\le0\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
+ Trường hợp 2
\(\begin{cases}-1\le a\le1\\1<2a+1<2\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\a\in\left\{0;\frac{1}{2}\right\}\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\)
+ Trường hợp 3
\(\begin{cases}-1\le a\le1\\2\le2a+1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\\frac{1}{2}\le a\end{cases}\) \(\Leftrightarrow\) \(\frac{1}{2}\le a\le1\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Trường hợp 4
1<a<2 suy ra 2a+1>3>2. Khi đó ta có Ta có T(a)\(\cap\) T(b)= \(\left[2;2a+1\right]\)
+ Trường hợp 5 :
a\(\ge\)2 suy ra 2a+1 \(\ge\) a \(\ge\) 2. Khi đó T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
- Nếu 2a+1<a \(\Leftrightarrow\) a<-1 thì T(b) = \(\left[a;2a+1\right]\)
Khi đó ta có T(a)\(\cap\) T(b) = \(\varnothing\) nên (1) vô nghiệm
Từ đó ta kết luận :
+ Khi a<-1 hệ vô nghiệm T(1) =\(\varnothing\)
+ Khi \(-1\le a\le0\) hoặc \(a\ge2\) hệ có tập nghiệm T (1) = \(\left[a;2a+1\right]\)
+ Khi 0<a<\(\frac{1}{2}\) hệ có tập nghiệm T(1) = \(\left[a;1\right]\)
+ Khi \(\frac{1}{2}\)\(\le\)a \(\le\)1 hệ có tập nghiệm T(1) = \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Khi 1<a<2, hệ có tập nghiệm T(1) =\(\left[2;2a+1\right]\)
\(mx^2+\left(m+1\right)x-2m\le0\) (1)
Nếu \(m=0\) thì dễ thấy (1) có nghiệm \(x\le0\)
Xét \(m\ne0\) Khi đó (1) là bất phương trình bậc hai với a=m.
Ngoài ra, biệt thức
\(\Delta=9m^2+2m+1=\left(3m+\frac{1}{3}\right)^2+\frac{8}{9}>0\) \(\curlyvee m\in R\). Từ đó ta có ngay kết luận :
- Khi m < 0, bất phương trình (1) có tập nghiệm
T(1) = \(\left(x;\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)\(\cup\)\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};+\infty\right)\)
- Khi m = 0, bất phương trình (1) có tập nghiệm T(1) =R+
- Khi m>0, bất phương trình (1) có tập nghiệm
T(1)=\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)
Bạn ơi cái bảng đầu tiên bên phải là dương vô cùng, mk viết nhầm