Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MODE-> BẤM NÚT XUỐNG-> BẤM CHỌN SỐ 1-> CHỌN SỐ 1 -> RỒI CHỌN BPT BẠN MUỐN NHÉ
Theo bài ra :
\(\left(x+5\right)\left(x^2-1\right)\left(3-x\right)>0\)
<=> \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)>0\)
Đặt \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)=A\)
Ta có bảng xét dấu :
\(-\infty\) | -5 | -1 | 1 | 3 | \(+\infty\) | ||||
(x+5) | - | 0 | + | + | + | + | |||
x2-1 | + | + | 0 | - | 0 | + | + | ||
3-x | + | + | + | + | 0 | - | |||
A | - (loại) | 0 (loại) | +(t.m) | 0(loại) | -(loại) | 0(loại) | +(t.m) | 0(loại) | -(loại) |
Từ bảng xét dấu trên suy ra :
\(A>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\1< x< 3\end{matrix}\right.\)
hình :
A B C D E M 3 3 3 3
* ta kẻ hình bình hành \(ABEM\)
\(\Rightarrow\) \(\overrightarrow{AM}+\overrightarrow{AB}=\overrightarrow{AE}\) (qui tắc hình bình hành)
\(\Rightarrow\left|\overrightarrow{AM}+\overrightarrow{AB}\right|=\overrightarrow{AE}=AE\)
ta có : \(ME=AB=3\) (2 cảnh đối của hình bình hành \(ABEM\))
và \(DM=\dfrac{1}{2}DC=\dfrac{1}{2}.3=\dfrac{3}{2}\)
\(\Rightarrow DE=DM+ME=\dfrac{3}{2}+3=\dfrac{9}{2}\)
xét tam giác vuông \(ADE\)
ta có : \(AE^2=DA^2+DE^2\Leftrightarrow AE=\sqrt{DA^2+DE^2}\)
\(AE=\sqrt{3^2+\left(\dfrac{9}{2}\right)^2}=\dfrac{3\sqrt{13}}{2}\)
vậy \(\left|\overrightarrow{AM}+\overrightarrow{AB}\right|=\overrightarrow{AE}=AE=\dfrac{3\sqrt{13}}{2}\)
gọi 3 ngăn cần tìm là a,b,c ta có
a/5=b/6 và b/8=c/9\(\dfrac{ }{ }\)
⇒a/20=b/24=c/27⇒a/20=b/24=c/27=\(\dfrac{c-a}{27-20}\) =14/7=2
⇒a=2.20=40
⇒b=2.24=48
⇒c=2.27=54
Nếu làm đúng theo quy tắc trong biểu thức thì KQ chính xác là 9
\(A=\left|x+1\right|+5\)
\(\Rightarrow\left|x+1\right|+5\ge5\)
\(\Rightarrow\left|x+1\right|\ge0\)
\(\Rightarrow x+1\ge0\)
\(\Rightarrow x\ge-1\)
Mà A đạt GTNN, suy ra \(\left|x+1\right|\) nhỏ nhất
\(\Rightarrow x=-1\)
Thay \(x=-1\) vào biểu thức ta có:
\(A=\left|-1+1\right|+5=0+5=5\)
Vậy: \(Min_A=5\)
\(B=\left(x-1\right)^2=\left|y-3\right|+2\)
\(B=a^2-2a1+1^2=\left|y-3\right|+2\)
\(B=a^2-2a1+1=\left|y-3\right|+2\)
\(\Rightarrow a^2-2a1+1+2=\left|y-3\right|\)
\(\Rightarrow a\left(a-2\right)+1+2=\left|y-3\right|\)
\(\Rightarrow a\left(a-2\right)+3=\left|y-3\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)+3=y-3\\a\left(a-2\right)+3=-y-3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)=y-3-3\\a\left(a-2\right)=-y-3-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)=y-6\\a\left(a-2\right)=-y-6\end{array}\right.\)
\(\Rightarrow a^2-2a=-y-6\)
\(\Rightarrow a^2-2a+y=-6\)
\(\Rightarrow a\left(a-2\right)+y=-6\) (loại do âm)
\(a\left(a-2\right)=y-6\)
\(\Rightarrow-y+6=-a\left(a-2\right)\)
\(\Rightarrow6=y-a\left(a-2\right)\) (nhận)
Vậy: \(Min_B=6\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}a-b+c=5\\a-b+c=6\\-\dfrac{b^2-4ac}{4a}=-1\end{matrix}\right.\)=>a,b,c không có giá trị
Thực ra cũng không hoàn toàn là thế: \(\frac{-1}{-2};\frac{3}{-3};\frac{5}{-6};...\)
Do nếu nhân cả tử số và mẫu số với một số bất kỳ khác 0 ta sẽ được một phân số bằng phân số ban đầu cho nên với bất kỳ một phân số nào ta đều có thể viết được dưới dạng 1 phân số với mẫu số dương bằng cách nhân cả tử và mẫu số của phân số có mẫu số âm với -1