Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2016 ko lak số chính phương
b)2019 ko lak số chính phương
c)2025 có lak số chính phương
d)2015 ko lak số chính phương
e)2010 ko lak số chinh phương
f)2020 ko lak số chính phương
------------------------Hok Tốt--------------------------------
#_Girl2k5_#
Bg
Ta có: A = 2008 + 2007.2008 và B = 2006.2007.2008
Xét A = 2008 + 2007.2008:
=> A = 2008.1 + 2007.2008
=> A = 2008.(1 + 2007)
=> A = 2008.2008
=> A = 20082
=> A là số chính phương
=> ĐPCM (Điều phải chứng minh)
Xét B = 2006.2007.2008:
=> B = 2.17.59.32.223.23.251 (phân tích thừa số nguyên tố)
=> B \(⋮\)17
Mà B không chia hết cho 172 (vì trong biểu thức của B chỉ có một số là 17, các số còn lại đều không chia hết cho 17)
=> B không phải là số chính phương
=> ĐPCM
Ta có :
12016 = 1 = 12 ( Là số chính phương )
22017 = 22016 . 2 = 24.504 . 2 = ( 24 )504 . 2 = 16504 . 2 = ........6 . 2 = ........2 ( Có tận cùng là 2 => không phải số chính phương )
32018 = 32.1009 = ( 31009 )2 ( Là số chính phương )
42019 = ( 22 )2019 = 22.2019 = ( 22019 )2 ( Là số chính phương )
52020 = 52.1010 = ( 51010 )2 ( Là số chính phương )
=> Chọn B
2018^4n * 2019^4n *2020^ 4n
=(...8.^4)^n* (....9.^4)^n *(...0^4)^n
=...6^n* .....1^n* ...0^n
=....6 *...1 *...0( vì số tận cùng = 6,1,0 khi nâng lên bất kì lũy thừa nào thì cũng cho ta tận cùng =6 ,1,0)
= ...0
mà số có tận cùng =0 thì là số chính phương vậy ko có n thỏa mãn
mình ko chắc có đúng ko nữa
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
Không vì 100! có tận cùng là 0 nên 100! + 7 có tận cùng là 7.
Mà không có số chính phương nào tận cùng là 7 (ĐPCM).