\(x^2-x-\dfrac{1}{x}+\dfrac{1}{x^2}-10=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

ĐK: x khác 0

Ta có pt tương đương \(x^2+2+\dfrac{1}{x^2}-\left(x+\dfrac{1}{x}\right)-12=0\)

<=>\(\left(x+\dfrac{1}{x}\right)^2-\left(x+\dfrac{1}{x}\right)-12=0\)

<=>\(\left[{}\begin{matrix}x+\dfrac{1}{x}=-3\\x+\dfrac{1}{x}=4\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x^2+3x+1=0\left(1\right)\\x^2-4x+1=0\left(2\right)\end{matrix}\right.\)

Ta thấy pt (1)vô nghiệm

Pt(2) <=>\(\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)

KL \(x=2+\sqrt{3}\), \(x=2-\sqrt{3}\)

18 tháng 5 2018

\(x^2-x-\dfrac{1}{x}+\dfrac{1}{x^2}-10=0\)

\(\Rightarrow\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)-10=0\)

Đặt: \(x+\dfrac{1}{x}=t\) ta có: \(\left(x+\dfrac{1}{x}\right)^2=t^2\Leftrightarrow x^2+2+\dfrac{1}{x^2}=t^2\Leftrightarrow x^2+\dfrac{1}{x^2}=t^2-2\)

\(\Rightarrow t^2-2-t-10=0\)

\(\Rightarrow t^2-t-12=0\)

\(\Rightarrow t^2-4t+3t-12=0\)

\(\Rightarrow t\left(t-4\right)+3\left(t-4\right)=0\)

\(\Rightarrow\left(t+3\right)\left(t-4\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-3\\t=4\end{matrix}\right.\)

Thay vào rồi giải tiếp nha bạn

b: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}=\dfrac{-4x^2+11x-2}{\left(x+2\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2+4x+4+4x^2-11x+2=0\)

\(\Leftrightarrow5x^2-7x+6=0\)

hay \(x\in\varnothing\)

c: \(\Leftrightarrow\left(3x^2+2\right)^2-5x\left(3x^2+2\right)=0\)

=>3x^2-5x+2=0

=>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

5 tháng 7 2019

\(\frac{\sqrt{2}-1}{\sqrt{2}+2}-\frac{1}{1+\sqrt{2}}+\frac{\sqrt{2}+1}{\sqrt{2}}=\frac{\sqrt{2}-1}{\sqrt{2}+2}-\frac{\sqrt{2}}{\left(1+\sqrt{2}\right)\sqrt{2}}+\frac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}\left(\sqrt{2}+1\right)}=\frac{\sqrt{2}-1}{2+\sqrt{2}}-\frac{\sqrt{2}}{2+\sqrt{2}}+\frac{3+2\sqrt{2}}{2+\sqrt{2}}=\frac{\sqrt{2}-1-\sqrt{2}+3+2\sqrt{2}}{2+\sqrt{2}}=\frac{2+2\sqrt{2}}{2+\sqrt{2}}\) \(b,\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}=\left(\sqrt{x}-2\right)+\frac{10-x}{\sqrt{x}+2}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}=\frac{x-4+10-x}{\sqrt{x}+2}=\frac{6}{\sqrt{x}+2}\)

\(c,\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)

Câu a :

\(x-5\sqrt{x}-14=0\)

\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=0\\\sqrt{x}-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=49\end{matrix}\right.\)

Vậy \(S=\left\{49\right\}\)

Câu b :

\(\left(x^2+x+1\right)\left(x^2+x+2\right)=2\)

Đặt \(x^2+x+1=t\)

\(\Leftrightarrow t\left(t+1\right)=2\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left(t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-1=0\\t+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-2\end{matrix}\right.\)

Với \(t=1\) thì :

\(x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Với \(t=-2\) thì :

\(x^2+x+1=-2\)

\(\Leftrightarrow x^2+x+3=0\) ( pt vô nghiệm )

Vậy \(S=\left\{-1;0\right\}\)

AH
Akai Haruma
Giáo viên
15 tháng 3 2018

Lời giải:

ĐKXĐ: \(x\neq \pm 1\)

Ta có: \(\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=\frac{10}{9}\)

\(\Leftrightarrow \left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2+2.\frac{x}{x-1}.\frac{x}{x+1}=\frac{10}{9}+\frac{2x^2}{(x-1)(x+1)}\)

\(\Leftrightarrow \left(\frac{x}{x-1}+\frac{x}{x+1}\right)^2=\frac{10}{9}+\frac{2x^2}{x^2-1}\)

\(\Leftrightarrow \left(\frac{x(x+1)+x(x-1)}{x^2-1}\right)^2=\frac{10}{9}+\frac{2x^2}{x^2-1}\)

\(\Leftrightarrow \left(\frac{2x^2}{x^2-1}\right)^2=\frac{10}{9}+\frac{2x^2}{x^2-1}\)

Đặt \(\frac{2x^2}{x^2-1}=t\Rightarrow t^2=\frac{10}{9}+t\)

\(\Leftrightarrow 9t^2-9t-10=0\)

\(\Leftrightarrow (3t-5)(3t+2)=0\) \(\Leftrightarrow \left[\begin{matrix} t=\frac{5}{3}\\ t=\frac{-2}{3}\end{matrix}\right.\)

Nếu \(t=\frac{5}{3}\Rightarrow \frac{2x^2}{x^2-1}=\frac{5}{3}\Leftrightarrow 6x^2=5x^2-5\)

\(\Leftrightarrow x^2=-5\) (VL)

Nếu \(t=\frac{-2}{3}\Rightarrow \frac{2x^2}{x^2-1}=\frac{-2}{3}\)

\(\Leftrightarrow 6x^2=2-2x^2\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\pm\frac{1}{2}\)(t/m)

Vậy..........

2 tháng 1 2019

1.

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)

2.

a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}

b) ĐK:x\(\ge-3\)

\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)

Vậy S={-2}

3.

a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)

Vậy GTNN của A=\(\dfrac{3}{4}\)

a: \(=3-2\sqrt{2}-\sqrt{2}+1+1+\dfrac{1}{2}\sqrt{2}\)

\(=-\dfrac{5}{2}\sqrt{2}+5\)

b: \(=\dfrac{x-4+10-x}{\sqrt{x}+2}=\dfrac{6}{\sqrt{x}+2}\)

c: \(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)