K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

2x-y=1, 2y-z=2, 2z-x=3

Ta có 2x-y+2y-z+2z-x=2(x+y+z)-(x+y+z)=x+y+z=1+2+3=6. Vậy x+y+z=6

15 tháng 10 2019

a) Ta có: 3x  = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

           7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)

Vậy ...

b) Tương tự câu trên

c) Ta có:  \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)

Vậy ....

d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)

e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)

Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)

Nếu ko hiểu cứ hỏi t

22 tháng 11 2020

b,Sửa đề :  \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)

Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)

\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)

Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)

\(x=36,75;y=49;z=122,5\)

\(a,x-5⋮x+2\)

\(\Rightarrow x+2-7⋮x+2\)

\(\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

x + 2 = 1=> x = -1

x + 2 = -1 => x = -3

.... tương tự nhé ~ 

\(2x+3⋮x-5\)

\(\Rightarrow2x-10+7⋮x-5\)

\(\Rightarrow2\left(x-5\right)+7⋮x-5\)

\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

x - 5 = 1 => x = 6 

.... 

15 tháng 8 2017

Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=k\)
=> x = 5k ; y = 3k ; z = 2k
=> 2x = 10k ; 3y = 9k ; 4z = 8k
      Mà 2x + 3y + 4z = 54
=> 10k + 9k + 8k = 54
=> 27k = 54
=> k = 2
=> x = 10 ; y = 6 ; z = 4 

5 tháng 4 2020

X là 16,527

5 tháng 4 2020

x+y+z=1894,13952

vì nếu rời dấu của x sang trái 2 hàng thì đc y =>x/100=y

vì nếu rời dấu phẩy của x sang phẩy sang phải 2 hàng thì đc z =>100xX=z

=>x/100+x+100x=1894,13952

=>101,01x=1894,13952=>x=1894,13952:101,01=18,752

31 tháng 7 2020

vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y

<=> 1+z+xy >= x+y+z

<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)

tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)

cộng theo vế của (1), (2), (3) ta được

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)

dấu "=" xảy ra khi x=y=z=1

30 tháng 7 2020

\(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\text{Σ}\frac{x}{x^2+xy+zx}=\text{Σ}\frac{x}{x\left(x+y+z\right)}=\frac{3}{x+y+z}\)

Do \(1\ge x^2\)và \(y\ge xy\)

Dấu = xảy ra khi x = y = z = 1

27 tháng 3 2015

Ta có : x+y-z+3=1=> x+y-x=-2

Thay x+y= 4 vào x+y-z=-2, Ta được : 

  4-z=-2

<=> z=6

Vì y-x=2 => y là số lớn hơn

Tìm x, y bằng bài toán tổng hiệu , ta có : 

x= (4-2):2=1

y= 4-1=3

Kết luận : x=1;y=3;z=6