Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)
Có: \(VT=\left|1-x\right|+\left|x-2\right|\)
\(\ge\left|1-x+x-2\right|=3=VP\)
Khi \(x=0;x=3\)
b)\(\sqrt{x^2-10x+25}=3-19x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)
\(\Leftrightarrow\left|x-5\right|=3-19x\)
\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)
\(\Leftrightarrow-360x^2+104x+16=0\)
\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)
\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)
c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
Hong Ra On chuyên gì thế hả sao gọi mình là sao
\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\sqrt{\dfrac{\left(y-3\right)^2}{2}}+\sqrt{\dfrac{\left(y+1\right)^2}{2}}=2\sqrt{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\left|\dfrac{\left(y-3\right)}{\sqrt{2}}\right|+\left|\dfrac{\left(y+1\right)}{\sqrt{2}}\right|=\left|\dfrac{4}{\sqrt{2}}\right|=2\sqrt{2}=VP\end{matrix}\right.\)đẳng thức khi
\(7\ge x\ge\dfrac{5}{2}\)
kết luận
nghiệm của pt là : \(7\ge x\ge\dfrac{5}{2}\)
ĐKXĐ : \(x\ge-1\)
\(\sqrt{x^2+2x+3}\) \(+\sqrt{x^2+x+2}=2x+2\)
<=> \(\frac{x^2+2x+3-x^2-x-2}{\sqrt{x^2+2x+3}+\sqrt{x^2+x+2}}-2x-2=0\)
<=> \(\frac{x+1}{\sqrt{x^2+2x+3}+\sqrt{x^2+x+2}}-2\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(\frac{1}{\sqrt{x^2+2x+3}+\sqrt{x^2+x+2}}-2\right)=0\)
<=> \(x=-1\left(tm\right)\)vì \(\left(\frac{1}{\sqrt{x^2+2x+3}+\sqrt{x^2+x+2}}-2\right)\ne0\)
vậy \(x=-1\)
CHÚC BN HỌC TỐT
a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)
Bình phương 2 vế:
\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)
\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)
Vậy pt có 2 nghiệm \(x=-1;x=-5\)
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)
Phương trình trở thành:
\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)
a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)
\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)
vậy \(S=\left\{-1;-2;-5\right\}\)
\(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3
<=> \(\sqrt{\left(x-1\right)^2}\)+ \(\sqrt{\left(x-2\right)^2}\)= 3
<=> \(\left|x-1\right|\)+\(\left|x-2\right|\)=3
<=> x - 1 + x - 2 = 3
<=> 2x - 3 = 3
<=> x = \(\dfrac{6}{2}\)= 3
b ,
\(\sqrt{x^2-10x+25}=3-19x\)
<=>\(\sqrt{\left(x-5\right)^2}=3-19x\)
<=> \(\left|x-5\right|=3-19x\)
<=> \(x-5=3-19x\)
\(\Leftrightarrow x+19x=3+5\)
\(\Leftrightarrow20x=8\Leftrightarrow x=\dfrac{8}{20}=\dfrac{2}{5}\)
\(2x^2+x+\sqrt{x^2+3}+2x\sqrt{x^2+3}=9\)
\(\Leftrightarrow2x^2+x-3+\left(\sqrt{x^2+3}-2\right)+\left(2x\sqrt{x^2+3}-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{x^2+3-4}{\sqrt{x^2+3}+2}+\frac{4x\left(x^2+3\right)-16}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{x^2-1}{\sqrt{x^2+3}+2}+\frac{4x^3+12x-16}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x-1\right)\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(2x+3\right)+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}\right)=0\)
Dễ thấy: \(\left(2x+3\right)+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}>0\)
Nên x-1=0 suy ra x=1
Đặt \(2x-5=t^2\)ta có \(x=\frac{t^2+5}{2}\)thay giá trị của x vào phương trình đã cho được:
\(\sqrt{\frac{t^2+5}{2}-2+t}+\sqrt{\frac{t^2+5}{2}+2+3t}=7\sqrt{2}\)
hay \(\sqrt{t^2+5-2+2t}+\sqrt{t^2+5+4+6t}=14\)
\(\sqrt{t^2+2t+1}+\sqrt{t^2+6t+9}=14\)
\(\sqrt{\left(t+1\right)^2}+\sqrt{\left(t+3\right)^2}=14\)
\(t+1+t+3=14\)
\(2t+4=14\)
2t=10
t=5
Từ đó \(x=\frac{25+5}{2}=15\)
Ta có: \(\sqrt{x^2+2x+3}+\sqrt{x^2+x+2}=2x+2\)
Bình phương 2 vế ta có:
\(2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=4\left(x+1\right)^2-x^2-2x-3-x^2-x-2\) (\(x\ge-1\))
\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=4x^2+8x+4-2x^2-3x-5\)
\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=2x^2+5x-1\)\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=2x^2+5x-1\)
Bình phương 2 vế, ta được:
\(4\left(x^2+2x+3\right)\left(x^2+x+2\right)=\left(2x^2+5x-1\right)^2\) ( ĐK:\(\left[{}\begin{matrix}x\le\dfrac{-5-\sqrt{33}}{4}\\x\ge\dfrac{-5+\sqrt{33}}{4}\end{matrix}\right.\))
\(\Leftrightarrow4\left(x^4+x^3+2x^2+2x^3+2x^2+4x+3x^2+3x+6\right)=4x^4+20x^3+21x^2-10x+1\)
\(\Leftrightarrow4x^4+4x^3+8x^2+8x^3+8x^2+16x+12x^2+12x+24=4x^4+20x^3+21x^2-10x+1\)\(\Leftrightarrow-8x^3+7x^2+38x+23=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{23}{8}\\x=-1\left(loai\right)\end{matrix}\right.\)
Vậy nghiệm của PT là \(x=\dfrac{23}{8}\)
dậy sớm thế