Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Thấy: x=0;y=0 không phải là nghiệm của hệ.
\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)
Trừ vế theo vế hai phương trình,đc:
\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)
\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:
\(26x^4-426x^2-1728=0\)
\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé
\(|2x^2-3x+4|-|2x-x^2-1|=0\)
\(\Leftrightarrow|2x^2-3x+4|=|2x-x^2-1|\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=-2x+x^2+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4-2x+x^2+1=0\\2x^2-3x+4+2x-x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3\left(x^2-\frac{5}{3}x+\frac{25}{9}-\frac{25}{9}+\frac{5}{3}\right)=0\\x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3\left(x-\frac{5}{3}^2\right)-\frac{10}{3}=0\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\left(Loai\right)\end{cases}}\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}\right)^2-\left(\frac{\sqrt{30}}{3}\right)^2=0\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}-\frac{\sqrt{30}}{3}\right)\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}+\frac{\sqrt{30}}{3}\right)=0\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}\right)\left(x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}=0\\x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{10}}{3}\\x=\frac{5-\sqrt{10}}{3}\end{cases}}\)
Vậy ...
\(\left|2x^2-3x+4\right|-\left|2x-x^2-1\right|=0\)
\(\Leftrightarrow\left|2x^2-3x+4\right|=\left|2x-x^2-1\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=x^2-2x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)
\(TH1:3x^2-5x+5=0\)
Ta có: \(\Delta=5^2-4.3.5=-35< 0\)(vô nghiệm)
\(TH2:x^2-x+3=0\)
Ta có: \(\Delta=1^2-4.1.3=-11< 0\)(vô nghiệm)
Vậy pt vô nghiệm
a/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(\Leftrightarrow2x^2+3x+5+\frac{3}{x}+\frac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+5=0\)
Đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\) (\(\left|a\right|\ge2\))
\(\Leftrightarrow2\left(a^2-2\right)+3a+5=0\)
\(\Leftrightarrow2a^2+3a+1=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
Phương trình vô nghiệm
b/ Số hạng cuối là 4 hay 16 bạn? 4 thì mình ko giải được, phân tách casio cũng ko được
c/ ĐKXĐ:\(\left[{}\begin{matrix}-2\le x\le-1\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow2x^2+x+2-5\sqrt{\left(x-2\right)\left(x+1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow2\left(x^2-x-2\right)+3\left(x+2\right)-5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{matrix}\right.\)
\(\Leftrightarrow2a^2+3b^2-5ab=0\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x-2}=\sqrt{x+2}\\2\sqrt{x^2-x-2}=3\sqrt{x+2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x+2\\4\left(x^2-x-2\right)=9\left(x+2\right)\end{matrix}\right.\) \(\Leftrightarrow...\)
a) x3+4x2+x-6=0
<=> x3+3x2+x2+3x-2x-6=0
<=> x2(x+3)+x(x+3)-2(x+3)=0
<=> (x+3)(x2+x-2)=0
<=> \(\left[\begin{matrix}x+3=0\\x^2+x-2=0\end{matrix}\right.\)<=> \(\left[\begin{matrix}x=-3\\\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\end{matrix}\right.\)
<=> \(\left[\begin{matrix}x=-3\\x=1\\x=-2\end{matrix}\right.\)
Vậy ...
b) x3-3x2+4=0
<=> x3-2x2-x2+4=0
<=> x2(x-2)-(x-2)(x+2)=0
<=> (x-2)(x2-x-2)=0
<=> \(\left[\begin{matrix}x-2=0\\x^2-x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=2\\\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\end{matrix}\right.\)
<=> \(\left[\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy ...
c) x4+2x3+2x2-2x-3=0
<=> x4+x3+x3+x2+x2+x-3x-3=0
<=> x3(x+1)+x2(x+1)+x(x+1)-3(x+1)=0
<=> (x+1)(x3+x2+x-3)=0
<=> (x+1)(x3-x2+2x2-2x+3x-3)=0
<=> (x+1)[x2(x-1)+2x(x-1)+3(x-1)]=0
<=> (x+1)(x-1)(x2+2x+3)=0
Mà x2+2x+3=x2+2x+1+2=(x+1)2+2>0
<=> (x+1)(x-1)=0
<=>\(\left[\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\)<=> \(\left[\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Vậy ...
\(\Leftrightarrow\)\(x^2\left(y-2\right)+x\left(y-2\right)-x+4=0\)
\(\Leftrightarrow x\left(x+1\right)\left(y-2\right)-\left(x+1\right)=-5\)
\(\Leftrightarrow\left(x+1\right)\left(xy-2x-1\right)=-5\)
\(x;y\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\xy-2x-1\in Z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\inƯ\left(-5\right)\\xy-2x-1\inƯ\left(-5\right)\end{matrix}\right.\)
Bạn kẻ bảng sẽ tìm được (x;y) tương ứng
Cảm ơn nha