K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3.\)

\(\Rightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}\right)=3\)

Đặt : \(\sqrt{x+5}=a\Rightarrow x+5=a^2\)

\(\sqrt{x+2}=b\Rightarrow x+2=b^2\)\(\left(đk:a,b\ge0\right)\)

\(\Rightarrow a^2-b^2=x+5-x-2=3\left(1\right)\)

Mà theo phương trình, ta có :

\(\left(a-b\right)\left(1+ab\right)=3\)

\(\Rightarrow a+a^2b-b-ab^2=3\)\(\left(2\right)\)

Tự giải hệ 

25 tháng 8 2019

\(\Leftrightarrow1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)

\(\Leftrightarrow\sqrt{x^2+7x+10}-2-\sqrt{x+5}+2-\sqrt{x+2}+1=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+10}+2}+\frac{x+1}{2+\sqrt{x+5}}+\frac{x+1}{1+\sqrt{x+2}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{x+6}{\sqrt{x^2+7x+10}+2}+\frac{1}{2+\sqrt{x+5}}+\frac{1}{1+\sqrt{x+2}}\right)=0\)

Giải nốt nhá ^.^

13 tháng 10 2015

Đk x>= -2 

Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\Rightarrow\sqrt{x^2+7x+10}=a+b;a^2-b^2=x+5-x-2=3\)

pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

<=> \(\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)

<=> \(\left(a-b\right)\left(ab+1\right)-\left(a-b\right)\left(a+b\right)=0\)

<=> \(\left(a-b\right)\left(ab+1-a-b\right)=0\)

<=> \(\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)

=> a = b hoặc b = 1 hoặc a = 1 

(+) a = b => x + 5 = x +2 => 0x = -3 (loại )

(+) a = 1 => x + 5 = 1 => x = -4 (loại )

(+) b = 1 => x + 2 = 1=> x = -1 ( TM)

Vậy x = -1 là nghiệm của pt 

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Câu a)

Đặt \(\left\{\begin{matrix} \sqrt[3]{1-x}=a\\ \sqrt{x+2}=b\end{matrix}\right.\). Khi đó ta thu được hệ sau:

\(\left\{\begin{matrix} a+b=1\\ a^3+b^2=3\end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} b=1-a\\ a^3+b^2=3\end{matrix}\right.\)

\(\Rightarrow a^3+(1-a)^2=3\)

\(\Rightarrow a^3+a^2-2a-2=0\)

\(\Leftrightarrow a^2(a+1)-2(a+1)=0\Leftrightarrow (a+1)(a^2-2)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=\pm \sqrt{2}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=2\\ x=1-\sqrt{8}\\ x=1+\sqrt{8}\end{matrix}\right.\)

Thử lại thấy $x=2$ và $x=1+\sqrt{8}$ thỏa mãn.

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Câu b)

Đặt \(\left\{\begin{matrix} \sqrt[3]{x^2-x-8}=a\\ \sqrt[3]{x^2-8x-1}=b\end{matrix}\right.\Rightarrow a^3-b^3=7x-7\)

PT trở thành:

\(\sqrt[3]{a^3-b^3+8}-a+b=2\)

\(\Rightarrow \sqrt[3]{a^3-b^3+8}=a-b+2\)

\(\Rightarrow a^3-b^3+8=(a-b+2)^3=a^3-b^3+8+3(a-b)(a+2)(-b+2)\)

(áp dụng công thức \((a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)\) )

\(\Rightarrow (a-b)(a+2)(-b+2)=0\Rightarrow \left[\begin{matrix} a=b\\ a=-2\\ b=2\end{matrix}\right.\)

Nếu \(a=b\Rightarrow x^2-x-8=x^2-8x-1\Rightarrow 7x-7=0\Rightarrow x=1\)

Nếu \(a=-2\Rightarrow x^2-x-8=-8\Rightarrow x^2-x=0\Rightarrow x=0; x=1\)

Nếu $b=2$ thì \(x^2-8x-1=8\Rightarrow x^2-8x-9=0\Rightarrow x=9; x=-1\)

Thử lại.............

14 tháng 7 2019

\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow9x-7x=5+7\)

\(\Leftrightarrow2x=12\)

\(\Leftrightarrow x=6\)

14 tháng 7 2019

\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\)