K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

X=2

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

X=2 nha bạn

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

em mới học lớp 6 nên bài này em không làm được anh thông cảm cho em nhé

21 tháng 6 2015

ĐK: 3x + 3 \(\ge\)0 ; 5 - 2x \(\ge\) 0 => -1 \(\le\) x \(\le\frac{5}{2}\)

pt <=> \(\left(\sqrt{3x+3}-3\right)+\left(1-\sqrt{5-2x}\right)=x^3-2x^2-x^2+2x-12x+24\)

<=> \(\frac{3x-6}{\sqrt{3x+3}+3}+\frac{-4+2x}{1+\sqrt{5-2x}}=x^2\left(x-2\right)-x\left(x-2\right)-12\left(x-2\right)\)

<=> \(\frac{3\left(x-2\right)}{\sqrt{3x+3}+3}+\frac{2\left(x-2\right)}{1+\sqrt{5-2x}}-\left(x-2\right)\left(x^2-x-12\right)=0\)

<=> \(\left(x-2\right)\left(\frac{3}{\sqrt{3x+3}+3}+\frac{2}{1+\sqrt{5-2x}}-\left(x^2-x-12\right)\right)=0\)

<=> x - 2 = hoặc \(\frac{3}{\sqrt{3x+3}+3}+\frac{2}{1+\sqrt{5-2x}}-\left(x^2-x-12\right)=0\)(*)

Nhận xét : x2 - x - 12 = (x - 4).(x+3) < 0 <=> -3 < x < 4

=> Với điều kiện  -1 \(\le\) x \(\le\frac{5}{2}\) thì x2 - x - 12  < 0 => - (x2 - x - 12 ) > 0

Do đó: \(\frac{3}{\sqrt{3x+3}+3}+\frac{2}{1+\sqrt{5-2x}}-\left(x^2-x-12\right)>0\)với mọi -1 \(\le\) x \(\le\frac{5}{2}\) 

=> (*) vô nghiệm

Vậy PT đã cho có nghiệm duy nhất x = 2

 

 

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

17 tháng 10 2020

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

17 tháng 10 2020

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

8 tháng 8 2019

a, đặt \(\sqrt{x+5}=t\Rightarrow\)\(t^2-5=x\) ta có pt \(\left(t^2-5\right)^2-4\left(t^2-5\right)-3=t\)

Giải ra t=2 thay vào x=-1

b, đăt \(x=a,\sqrt{x^2+1}=b\)ta có pt

\(b^2+3a=\left(a+3\right)b\)

\(b^2-ab+3a-3b=b\left(b-a\right)+3\left(a-b\right)\)

\(=\left(b-3\right)\left(b-a\right)=0\)

\(TH:b=3,a=b\)\(\sqrt{x^2+1}=3\Rightarrow x^2+1=9\Rightarrow x=\mp2\sqrt{2}\)

\(x=\sqrt{x^2+1}\Rightarrow x^2=x^2+1\left(L\right)\)

3,

31 tháng 8 2017

ai giải hộ với nhanh cái mk sắp đi học òi

2 tháng 9 2017

thui chữa òi ko cần làm đâu

NV
27 tháng 6 2019

Bạn coi lại đề câu a và câu c

b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)

Phương trình trở thhành:

\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)

\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)

\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)

\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))

\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)

\(\Leftrightarrow x^2=16\Rightarrow x=4\)

27 tháng 6 2019

@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking

Giúp mk vs!khocroi

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 1:

PT \(\Leftrightarrow x^2+3x+8=(x+5)\sqrt{x^2+x+2}\)

\(\Leftrightarrow (x^2+x+2)+2(x+5)-4=(x+5)\sqrt{x^2+x+2}\)

Đặt \(\sqrt{x^2+x+2}=a; x+5=b(a\geq 0)\)

\(PT\Leftrightarrow a^2+2b-4=ba\)

\(\Leftrightarrow (a^2-4)-b(a-2)=0\)

\(\Leftrightarrow (a-2)(a+2-b)=0\Rightarrow \left[\begin{matrix} a=2\\ a+2=b\end{matrix}\right.\)

Nếu \(a=2\Rightarrow x^2+x+2=a^2=4\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow x=1; x=-2\) (đều thỏa mãn)

Nếu \(a+2=b\Leftrightarrow \sqrt{x^2+x+2}+2=x+5\)

\(\Leftrightarrow \sqrt{x^2+x+2}=x+3\)

\(\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ x^2+x+2=(x+3)^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ 5x+7=0\end{matrix}\right.\Rightarrow x=\frac{-7}{5}\) (thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 2:

ĐKXĐ: \(x\geq 1\) hoặc \(x\leq \frac{1}{2}\)

\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)

\(\Leftrightarrow 3(2x^2-3x+1)-8x\sqrt{2x^2-3x+1}+4x^2=0\)

Đặt \(\sqrt{2x^2-3x+1}=a(a\geq 0)\)

Khi đó PT \(\Leftrightarrow 3a^2-8xa+4x^2=0\)

\(\Leftrightarrow (a-2x)(3a-2x)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ 3a=2x\end{matrix}\right.\)

Nếu \(a=\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2-3x+1=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2+3x-1=0\end{matrix}\right.\Rightarrow x=\frac{-3+\sqrt{17}}{4}\) (t/m)

Nếu \(3a=3\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 9(2x^2-3x+1)=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 14x^2-27x+9=0\end{matrix}\right.\Rightarrow x=\frac{3}{2}; x=\frac{3}{7}\) (t/m)

Vậy...........

NV
13 tháng 4 2019

a/

ĐKXĐ: \(x\ge\frac{5}{3}\)

\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)

\(\Rightarrow x=3\)

b/ \(\left\{{}\begin{matrix}2x-y\ge1\\x+2y\ge0\end{matrix}\right.\) (1)

Biến đổi pt dưới:

\(\left(2\left(x+2y\right)-1\right)\sqrt{2x-y-1}=\left(2\left(2x-y-1\right)-1\right)\sqrt{x+2y}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2y}=a\ge0\\\sqrt{2x-y-1}=b\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(2a^2-1\right)b=\left(2b^2-1\right)a\)

\(\Leftrightarrow2a^2b-2ab^2+a-b=0\)

\(\Leftrightarrow2ab\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)

\(\Rightarrow a=b\) (do \(\left\{{}\begin{matrix}a\ge0\\b\ge0\end{matrix}\right.\) \(\Rightarrow2ab+1>0\))

\(\Rightarrow\sqrt{x+2y}=\sqrt{2x-y-1}\Leftrightarrow x+2y=2x-y-1\)

\(\Leftrightarrow x=3y+1\)

Thế vào pt trên:

\(\left(3y+1\right)^2-5y^2-8y-3=0\)

\(\Leftrightarrow4y^2-2y-2=0\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=4\\y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\end{matrix}\right.\)

Thế nghiệm vào hệ điều kiện (1) thì chỉ có \(\left(x;y\right)=\left(4;1\right)\) thỏa mãn

11 tháng 4 2019

Câu a) Cứ bình phương và bình phương cho hết căn rồi bấm máy tính giải ra :v

b)pt\(\left(2\right)\)\(\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)=\left(4x-2y-3\right)^2\left(x+2y\right)\)

\(\Leftrightarrow\left(x-3y-1\right)\left(8x^2-8y^2-4x-8y+12xy-1\right)=0\)

Đến đây tự giải thế vào (1)

Nguyễn Việt Lâm Giải giúp t TH2 nha!