Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y −1y−2−5y+2=12y2−4+1
ĐKXĐ: \(x\ne2;x\ne-2\)
\(\Leftrightarrow\frac{y-1}{y-2}-\frac{5}{y+2}-\frac{12}{\left(y-2\right)\left(y+2\right)}-1=0\)
\(\Leftrightarrow\frac{\left(y-1\right)\left(y+2\right)-5\left(y-2\right)-12-\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}=0\)
\(\Leftrightarrow y^2+2y-y-2-5y+10-12-y^2-2y+2y+4=0\)
\(\Leftrightarrow-4y=0\)
\(\Leftrightarrow y=0\left(TM\right)\)
Vậy S = {0}
a) \(7x-8=4x+7\)
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=5\)
b) \(\frac{5x-4}{12}=\frac{16x+1}{7}\)
\(\Leftrightarrow35x-28=192x+12\)
\(\Leftrightarrow157x=-40\Leftrightarrow x=\frac{-40}{157}\)
c)\(ĐKXĐ:x\ne\pm2\)
\(\frac{y+1}{y-2}-\frac{5}{y+2}=\frac{12}{y^2-4}+1\)
\(\Rightarrow\frac{\left(y+1\right)\left(y+2\right)-5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\frac{12+y^2-4}{y^2-4}\)
\(\Rightarrow\frac{y^2+3y+2-5y+10}{y^2-4}=\frac{12+y^2-4}{y^2-4}\)
\(\Rightarrow y^2-2y+12=12+y^2-4\)
\(\Rightarrow-2y=-4\Leftrightarrow y=2\left(ktm\right)\)
Vậy pt vô nghiệm
Tính giá trị của biểu thức
a) \(x\left(x-3xy\right)-\left(4xy-5x^2\right).\frac{3}{5}y\)
\(=x^2-3x^2y-\frac{12}{5}xy^2+3x^2y\)
\(=x^2-\frac{12}{5}xy^2\)
Tại \(x=-2\) và \(y=-\frac{1}{2}\), ta có:
\(\left(-2\right)^2-\frac{12}{5}.\left(-2\right).\left(-\frac{1}{2}\right)^2\)
\(=4+\frac{6}{5}=\frac{26}{5}\)
b) \(\left(y-3x\right).2x+\left(4y+\frac{3}{2}x\right).4x\)
\(=2xy-6x^2+16xy+6x^2\)
\(=18xy\)
Với x = -1 và \(y=\frac{1}{8}\), ta có:
\(18.\left(-1\right).\frac{1}{8}=-\frac{9}{4}\)
Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)
Vậy P=26
a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)
\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)
b) Ta có: \(x+y=\frac{1}{40}\)
\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)
\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)
\(\Rightarrow x^2+y^2=\frac{41}{1600}\)
Vậy \(N=\frac{41}{1600}\)
\(\frac{y+5}{y-1}-\frac{y+1}{y-3}=\)\(\frac{8}{-y^2+4y-3}\)\(\text{Đ}K\text{X}\text{Đ}:y\ne1;y\ne3\)
\(\Leftrightarrow\frac{\left(y+5\right)\left(y-3\right)}{\left(y-1\right)\left(y-3\right)}-\frac{\left(y+1\right)\left(y-1\right)}{\left(y-1\right)\left(y-3\right)}=\frac{-8}{\left(y-1\right)\left(y-3\right)}\)
\(\Rightarrow\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)=-8\)
\(\Leftrightarrow y^2+2y-15-y^2+1=-8\)
\(\Leftrightarrow2y-15+1=-8\Leftrightarrow2y=-8+15-1\Leftrightarrow2y=6\Leftrightarrow y=3\)(không thỏa mãn ĐKXĐ)
Vậy pt vô nghiệm
<=> \(\frac{y+5}{y-1}-\frac{y+1}{y-3}=\frac{8}{-y^2+y+3y-3}\)
<=>\(\frac{y+5}{y-1}-\frac{y+1}{y-3}=\frac{8}{\left(y-1\right)\left(3-y\right)}\) (ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x\ne3\end{cases}}\)
<=> \(\left(y+5\right)\left(3-y\right)-\left(-\left(y+1\right)\right)\left(y-1\right)=8\)
<=> \(\left(y+5\right)\left(3-y\right)-\left(-\left(y^2-1\right)\right)=8\)
<=> \(\left(y+5\right)\left(3-y\right)-\left(-y^2+1\right)=8\)
<=> \(3y-y^2+15-5y+y^2-1=8\)
<=> \(-2y+14=8\)
<=> \(-2y=-6\)
<=> \(y=3\)(không thỏa mãn ĐKXĐ)
Vậy PT vô nghiệm