Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(F\left(x\right)=x^4+6x^3+2x^2+x-7\)
\(G\left(x\right)=-4x^4-6x^3+2x^2-x+6\)
b: h(x)=f(x)+g(x)
\(=x^4+6x^3+2x^2+x-7-4x^4-6x^3+2x^2-x+6\)
\(=-3x^4+4x^2-1\)
c: Đặt h(x)=0
\(\Leftrightarrow3x^4-4x^2+1=0\)
\(\Leftrightarrow\left(3x^2-1\right)\left(x^2-1\right)=0\)
hay \(x\in\left\{1;-1;\dfrac{\sqrt{3}}{3};-\dfrac{\sqrt{3}}{3}\right\}\)
Ta có:
\(M=\frac{2014-x}{x-2013}=\frac{2013-x+1}{x-2013}=\frac{2013-x}{x-2013}+\frac{1}{x-2013}=\frac{-\left(x-2013\right)}{x-2013}+\frac{1}{x-2013}=-1+\frac{1}{x-2013}\)
Để M có GTNN thì \(\frac{1}{x-2013}\) phải có GTNN
=> \(\frac{1}{x-2013}\) phải là số âm lớn nhất
Mà 1 là số nguyên dương không đổi nên x - 2013 = - 1
=> x = 2012
Khi đó, ta có:
\(M=\frac{2014-2012}{2012-2013}=\frac{2}{-1}=-2\)
Vậy M đạt GTNN là - 2 <=> x = 2012
Ta có:
\(A=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow2B=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Rightarrow2B-B=B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(=1-\frac{1}{2^{10}}\)
\(\Rightarrow A=1-\left(1-\frac{1}{2^{10}}\right)=1-1+\frac{1}{2^{10}}=\frac{1}{2^{10}}\)
Vậy \(A=\frac{1}{2^{10}}\)
Để x=1 là nghiệm của f(x)
thì a.13+b.12+c.1+d=0
<=>a+b+c+d=0
Vậy..........
Do \(2A+B=5x^2+y^2+1>0\) nên \(A,B\) không cùng đồng thời nhận giá trị âm được!
xét hàm số
\(y=3^x+5^x\)ta có \(y'=3^xln3+5^xln5>0\) với mọi x hàm số đồng biến trên R
mặt khác xét hàm số \(f\left(x\right)=6x+2\)ta có f'=6>0 hàm số đồng biến trên R
mà x=1 thì y=8; f=8
suy ra x=1 à nghiệm của pt