Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x\left(x+1\right)\left(x^2+x+1\right)=42\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(x^2+x=t\), ta được :
\(t\left(t+1\right)=42\)
\(\Leftrightarrow t^2+t-42=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=6\\t=-7\end{matrix}\right.\)
Khi t = 6, ta được :
\(x^2+x-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Khi t = -7, ta được :
\(x^2+x+7=0\)
\(\Leftrightarrow\left[x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{27}{4}=0\) ( Vô lí )
Vậy ...
Làm cho bạn 1 con thôi dài quá trôi hết màn hình:
c) có vẻ khó nhất (con khác tương tự)
đặt 2x+2=t=> x+1=t/2
\(\left(t-1\right).\left(\frac{t}{2}\right)^{^2}.\left(t+1\right)=18\Leftrightarrow\left(t^2-1\right)t^2=4.18\)
\(t^4-t^2=4.18\Leftrightarrow y^2-2.\frac{1}{2}y+\frac{1}{4}=4.18+\frac{1}{4}=\frac{16.18+1}{4}=\left(\frac{17}{2}\right)^2\)
<=> \(\left(y-\frac{1}{2}\right)^{^2}=\left(\frac{17}{2}\right)^2\Rightarrow\left[\begin{matrix}y=\frac{1}{2}-\frac{17}{2}=-8\\y=\frac{1}{2}+\frac{17}{2}=9\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x+2=-8\Rightarrow x=-5\\2x+2=9\Rightarrow x=\frac{7}{2}\end{matrix}\right.\)
Câu a:
\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
\(\Leftrightarrow\left(64x^2-16x+1\right)\left(64x^2-16x\right)=72\)
Đặt 64x2 - 16x = t \(\left(t\ge-1\right)\)
\(\Rightarrow t\left(t+1\right)=72\)
\(\Leftrightarrow\left(t+9\right)\left(t-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-9\left(loai\right)\\t=8\left(nhan\right)\end{matrix}\right.\)
\(\Rightarrow64x^2-16x=8\)
\(\Leftrightarrow8\left(2x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Câu b:
\(\Leftrightarrow\left(x+1\right)^2\left(2x+1\right)\left(2x+3\right)=18\)
\(\Leftrightarrow\left(4x^2+8x+4\right)\left(4x^2+8x+3\right)=72\)
Đặt 4x2 + 8x + 4 = m \(\left(m\ge0\right)\)
\(\Rightarrow m\left(m-1\right)=72\)
\(\Leftrightarrow\left(m-9\right)\left(m+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=9\left(nhan\right)\\m=-8\left(loai\right)\end{matrix}\right.\)
\(\Rightarrow4\left(x+1\right)^2=9\)
\(\Leftrightarrow x+1=\pm\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Câu hỏi của Do Xuan Dat - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
\(\left(4x-5\right)^2\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\left(4x-5\right)^2\left(2x-3\right).2.\left(x-1\right).4=9.2.4\)
\(\Leftrightarrow\left(4x-5\right)^2\left(4x-6\right)\left(4x-4\right)=72\)(1)
Đặt \(4x-5=a\)
Khi đó (1) trở thành:
\(a^2\left(a-1\right)\left(a+1\right)=72\)
\(\Leftrightarrow a^2\left(a^2-1\right)=72\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow a^4-9a^2+8a^2-72=0\)
\(\Leftrightarrow a^2\left(a^2-9\right)+8\left(a^2-9\right)=0\)
\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0\)
\(\Leftrightarrow a^2-9=0\) (vì \(a^2+8>0\forall a\) )
\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
- Với \(a=3\Rightarrow4x-5=3\Rightarrow x=2\)
-Với \(a=-3\Rightarrow4x-5=-3\Rightarrow x=\frac{1}{2}\)
Vậy \(x=2,x=\frac{1}{2}\)
Chúc bạn học tốt.
\(\Leftrightarrow8x\left(8x-1\right)^2\left(8x-2\right)=72.\)(nhân cả 2 vế vs 8)
Đặt \(a=8x-1.\)ta có pt
\(\left(a-1\right)a^2\left(a+1\right)=72\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0.\)
\(\Rightarrow\left(a-3\right)\left(a+3\right)=0\)(do \(a^2+8\ne0.\))
\(\Rightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}8x-1=3\\8x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0.5\\x=-0.25\end{cases}}\)
vậy, \(S=\left\{0.5;-0.25\right\}.\)
xong rồi đó bn
a) \(pt\Leftrightarrow\frac{6}{x^2+2}-1+\frac{7}{x^2+3}-1+\frac{12}{x^2+8}-1-\frac{3x^2+16}{x^2+10}+2=0\)
\(\Leftrightarrow\frac{4-x^2}{x^2+2}+\frac{4-x^2}{x^2+3}+\frac{4-x^2}{x^2+8}+\frac{4-x^2}{x^2+10}=0\)
\(\Leftrightarrow\left(4-x^2\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}\right)=0\)
\(\Leftrightarrow4-x^2=0\)(do \(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}>0,\forall x\))
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
\(KL...\)
2x(8x - 1)2(4x - 1) = 9
<=> 512x4 - 256x3 + 40x2 - 2x = 9
<=> 512x4 - 256x3 + 40x2 - 2x - 9 = 0
<=> (2x - 1)(4x + 1)(64x4 - 16x + 9) = 0
vì 64x4 - 16x + 9 khác 0 nên:
<=> 2x - 1 = 0 hoặc 4x + 1 = 0
<=> x = 1/2 hoặc x = -1/4
\(\Rightarrow2x\cdot\left(64x^2-16x+1\right)\cdot\left(4x-1\right)=9\)
\(\Rightarrow\left(64x^2-16x+1\right)\cdot\left(8x^2-2x\right)=9\)
Nhân cả hai vế của phương trình với 8 ta được:
\(\left(64x^2-16x+1\right)\cdot\left(64x^2-16x\right)=72\)
Đặt \(a=64x^2-16x\left(a\ge1\right)\) (1)
\(\Rightarrow\left(a+1\right)\cdot a=72\)
\(\Rightarrow a^2+a-72=0\)
\(\Rightarrow\left(a-8\right)\cdot\left(a+9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=8\left(tmđk\right)\\a=-9\left(loại\right)\end{matrix}\right.\)
Thay vào (1) ta đc:
\(64x^2-16x=8\Rightarrow64x^2-16x-8=0\)
\(\Rightarrow\left(2x-1\right)\left(4x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
2x(8x−1)2(4x−1)=92x(8x−1)2(4x−1)=9
⇔(64x2−16x+1)(64x2−16x)=72⇔(64x2−16x+1)(64x2−16x)=72
Đặt 64x2 - 16x = t (t≥−1)(t≥−1)
⇒t(t+1)=72⇒t(t+1)=72
⇔(t+9)(t−8)=0⇔(t+9)(t−8)=0
⇔[ t=−9
t=8
⇔[t=−9(loai)t=8(nhan
⇒64x2−16