K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

a)   ta có :(x-1)(x-2)(x+3)(x+4)=24

           <=>[(x-1)(x+3)].[(x-2)(x+4)] =24

          <=>(x^2 +2x -3)(x^2+2x -8)=24

         đặt x^2  +2x -3  =a =>  (x^2 +2x -3)(x^2 +2x-8)=a(a-5) =24

                                                                                 <=>a^2 -5a-24=0

                                                                                <=>(a-8)(a+3)=0  <=> a-8=0 hoặc a+3=0 <=>a=8 hoặc a=-3

+) với a=8 => x^2 +2x-3=8 <=>x^2 +2x-11=0<=>(x+1)^2 -10=0   (vô nghiệm)  vì (x+1)^2  >=0

+) với a=-3=>x^2 +2x-3=-3<=>x^2 +2x=0<=>x.(x+2)=0  <=> x=0 hoặc x+2=0 <=>x=0 hoặc x=-2

Vậy tập nghiệm của pt là S={0;-2}

23 tháng 5 2016

a. (x-1)x(x+1)(x+2)=24

[(x-1)(x+2)].[x(x+1)]=24

(\(x^2\)+2x-x-2)(\(x^2\)+x)=24

(\(x^2\)+x-2)(\(x^2\)+x)=24

[(\(x^2\)+x-1)-1].[(\(x^2\)+x-1)+1]=24

\(\left(x^2+x-1\right)^2\)-1=24

\(\left(x^2+x-1\right)^2\)=25

\(\left(x^2+x-1\right)^2\)=\(5^2\) hoặc\(\left(x^2+x-1\right)^2\)=\(\left(-5\right)^2\)

\(x^2\)+x-1=5 hoặc \(x^2\)+x-1=-5

\(x^2\)+x-6=0 hoặc \(x^2\)+x+4=0(vô nghiệm)

\(\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)

Vậy x=2 hoặc x=-3

23 tháng 5 2016

a)(x-1)x=x2-x

(x+1)(x+2)=x(x+2)+(x+2)=x2+2x+x+2=x2+3x+2

=>(x-1)x(x+1)(x+2)=(x2-x)(x2+3x+2)=x2(x2+3x+2)-x(x2+3x+2)=x4+3x3+2x2-x3-3x2-2x

=x4+2x3-x2-2x

mà (x-1)x(x+1)(x+2)=24

nên x4+2x3-x2-2x=24

x3(x+2)-x(x+2)=24

(x3-x)(x+2)=24

Ta xét bảng sau:

x+21-12-23-34-46-68-812-1224-24
x-1-30-41-52-64-86-1010-1422-26
x3-x24-2412-128-86-64-43-32-21-1
x      2         

 

(ô trống là loại)

Vậy x=2, hờ hờ, t làm tầm bậy, không theo phương trình gì hết

 

8 tháng 2 2020

Câu 1 :

8 tháng 2 2020

a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)

=> \(3x-3-2x-6=-15\)

=> \(3x-3-2x-6+15=0\)

=> \(x=-6\)

Vậy phương trình có nghiệm là x = -6 .

b, Ta có : \(3\left(x-1\right)+2=3x-1\)

=> \(3x-3+2=3x-1\)

=> \(3x-3+2-3x+1=0\)

=> \(0=0\)

Vậy phương trình có vô số nghiệm .

c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)

=> \(14-35x-5=16-24x\)

=> \(14-35x-5-16+24x=0\)

=> \(-35x+24x=7\)

=> \(x=\frac{-7}{11}\)

Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .

Bài 2 :

a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)

=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)

=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)

=> \(x+15x-3=2x-16-10x-15\)

=> \(x+15x-3-2x+16+10x+15=0\)

=> \(24x+28=0\)

=> \(x=\frac{-28}{24}=\frac{-7}{6}\)

Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .

b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)

=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)

=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)

=> \(6x+24-30x+120=10x-15x+30\)

=> \(6x+24-30x+120-10x+15x-30=0\)

=> \(-19x+114=0\)

=> \(x=\frac{-114}{-19}=6\)

Vậy phương trình có nghiệm là x = 6 .

12 tháng 2 2017

\(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-3-2x+5\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}3x+1=0\\2-x=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[\begin{matrix}3x=-1\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{3}\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{-\frac{1}{3};2\right\}\)

12 tháng 2 2017

Có : \(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3-2x+5\right)=0\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(-x+2\right)=0\)

\(\Leftrightarrow\) \(\left[\begin{matrix}3x+1=0\\-x+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}3x=-1\\-x=-2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}x=\frac{-1}{3}\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-1}{3};2\right\}\)

11 tháng 2 2018

b)       \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt   \(x^2+3x=t\)   ta có:

          \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow\)\(t^2+2t-24=0\)

\(\Leftrightarrow\)\(\left(1-4\right)\left(1+6\right)=0\)

đến đây bn giải tiếp

20 tháng 10 2015

x2-4x+3=x2-4X+4-1=(x+2)2-1=(x+2-1)(x+2+1)=(x+1)(x+3)

x8-28=(x4)2-(24)2=(x4-24)(x4+24)=(x2-22)(x2+22)(x4+24)=(x-2)(x+2)(x2+22)(x4+24)=(x-2)(x+2)(x2+4)(x4+16)

n3+3n2+2n=n(n2+3n+2)

x2-2xy+y2+x2y+xy2=(x-y)2+xy(x-y)=(x-y)(x-y+xy)

10 tháng 1 2018

2. \(x\left(x+2\right)\left(x+3\right)\left(x+5\right)=280\)

\(\Leftrightarrow x\left(x+5\right)\left(x+2\right)\left(x+3\right)=280\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+6\right)=280\)

Đặt \(x^2+5x+3=t\)

\(\Rightarrow\left(t-3\right)\left(t+3\right)=280\)

\(\Leftrightarrow t^2-9=280\)

\(\Leftrightarrow t^2=289\Leftrightarrow\left[{}\begin{matrix}t=17\\t=-17\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+3=17\\x^2+5x+3=-17\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x-14=0\\x^2+5x+20=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+5x-14=0\text{(vì }x^2+5x+20=\left(x+\dfrac{5}{2}\right)^2+\dfrac{55}{4}>0\forall x\text{)}\)

\(\Leftrightarrow x^2-2x+7x-14=0\)

\(\Leftrightarrow x\left(x-2\right)+7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\)

\(\Leftrightarrow\) x - 2 = 0 hoặc x + 7 = 0

\(\Leftrightarrow\) x = 2 hoặc x = - 7

Vậy x = 2 hoặc x = -7.

10 tháng 1 2018

3. \(\left(x+3\right)\left(x+4\right)\left(x+5\right)=x\)

\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\left(x+5\right)-x=0\)

\(\Leftrightarrow x^3+12x^2+47x+60-x=0\)

\(\Leftrightarrow x^3+12x^2+46x+60=0\)

\(\Leftrightarrow x^3+6x^2+6x^2+36x+10x+60=0\)

\(\Leftrightarrow x^2\left(x+6\right)+6x\left(x+6\right)+10\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x^2+6x+10\right)=0\)

\(\Leftrightarrow x+6=0\text{(vì }x^2+6x+10=\left(x+3\right)^2+1>0\forall x\text{)}\)

\(\Leftrightarrow x=-6\)

Vậy x = -6.

20 tháng 1 2020

\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

<=> \(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+2x-x-2\right)-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt t = x2 + x 

<=> t(t - 2) - 24 = 0

<=> t2 - 2t - 24 = 0

<=> t2 - 6t + 4t - 24 = 0

<=> (t + 4)(t - 6) = 0

<=> \(\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\\x^2+3x-2x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x-2\right)\left(x+3\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy S = {2; -3}

(lưu ý: thay "ktm" thành vô lý và giải thích thêm)

\(\left(x+3\right)^4+\left(x+5\right)^4=2\)

<=> (x + 4 - 1)4 + (x + 4 + 1)4 - 2 = 0

Đặt y = x + 4

<=> (y - 1)4 + (y + 1)4 - 2 = 0

<=> y4 - 4y3 + 6y2 - 4y + 1 + y4 + 4y3 + 6y2 + 4y + 1 - 2 = 0

<=> 2y4 + 12y2 = 0

<=> 2y2(y2 + 6) = 0

<=> \(\orbr{\begin{cases}y^2=0\\y^2+6=0\left(ktm\right)\end{cases}}\)

<=> y = 0

<=> x + 4 = 0

<=> x = -4

Vậy S = {-4}

20 tháng 1 2020

\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)

<=> \(\frac{x^2+x+4}{2}-3+\frac{x^2+x+7}{3}-3=\frac{x^2+x+13}{5}-3+\frac{x^2+x+16}{6}-3\)

<=> \(\frac{x^2+x+4-6}{2}+\frac{x^2+x+7-9}{3}=\frac{x^2+x+13-15}{5}+\frac{x^2+x+16-18}{6}\)

<=> \(\frac{x^2+x-2}{2}+\frac{x^2+x-2}{3}=\frac{x^2+x-2}{5}+\frac{x^2+x-2}{6}\)

<=> \(\left(x^2+2x-x-2\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=0\)

<=> (x + 2)(x - 1) = 0 (do \(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\ne0\))

<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy S = {-2; 1}

câu cuối: + 3 vào sau các phân số của pt như trên

2:

a: =>x-1=0 hoặc 3x+1=0

=>x=1 hoặc x=-1/3

b: =>x-5=0 hoặc 7-x=0

=>x=5 hoặc x=7

c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)

d: =>x=0 hoặc x^2-1=0

=>\(x\in\left\{0;1;-1\right\}\)

18 tháng 4 2023

Bạn tách ra từng câu thoi nhe .