Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm cho bạn 1 con thôi dài quá trôi hết màn hình:
c) có vẻ khó nhất (con khác tương tự)
đặt 2x+2=t=> x+1=t/2
\(\left(t-1\right).\left(\frac{t}{2}\right)^{^2}.\left(t+1\right)=18\Leftrightarrow\left(t^2-1\right)t^2=4.18\)
\(t^4-t^2=4.18\Leftrightarrow y^2-2.\frac{1}{2}y+\frac{1}{4}=4.18+\frac{1}{4}=\frac{16.18+1}{4}=\left(\frac{17}{2}\right)^2\)
<=> \(\left(y-\frac{1}{2}\right)^{^2}=\left(\frac{17}{2}\right)^2\Rightarrow\left[\begin{matrix}y=\frac{1}{2}-\frac{17}{2}=-8\\y=\frac{1}{2}+\frac{17}{2}=9\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x+2=-8\Rightarrow x=-5\\2x+2=9\Rightarrow x=\frac{7}{2}\end{matrix}\right.\)
Bài 1:
a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)
\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)
Suy ra: \(12x-45-12x^2+45x=0\)
\(\Leftrightarrow-12x^2+57x-45=0\)
\(\Leftrightarrow-12x^2+12x+45x-45=0\)
\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)
\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)
mà \(-3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)
b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)
Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)
\(\Leftrightarrow-x^2+16x-39=0\)
\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)
\(\Leftrightarrow x^2-13x-3x+39=0\)
\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)
Vậy: Tập nghiệm S={3;13}
c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)
\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)
Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)
\(\Leftrightarrow-21x^2+26x+11=0\)
\(\Leftrightarrow-21x^2-7x+33x+11=0\)
\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)
Lời giải:
a)
\((x-2)(x-3)+2x=(x-2)^2-2\)
\(\Leftrightarrow (x-2)(x-2-1)+2x=(x-2)^2-2\)
\(\Leftrightarrow (x-2)^2-(x-2)+2x=(x-2)^2-2\)
\(\Leftrightarrow x+4=0\Rightarrow x=-4\)
b)
\((x-1)^2+3x(x-1)+7=(2x-1)^2+5(x-3)\)
\(\Leftrightarrow (x-1)^2+3x(x-1)+7=x^2+(x-1)^2+2x(x-1)+5(x-3)\)
\(\Leftrightarrow x(x-1)+7=x^2+5(x-3)\)
\(\Leftrightarrow 6x=22\Rightarrow x=\frac{11}{3}\)
c)
\(5(x^2-2x-1)+2(3x-2)=5(x+1)^2=5(x^2-2x+1)\)
\(\Leftrightarrow -5+2(3x-2)=5\)
\(\Leftrightarrow 3x-2=5\Rightarrow x=\frac{7}{3}\)
d)
\((x-1)(x^2+x+1)-2x=x(x-1)(x+1)=x(x^2-1)\)
\(\Leftrightarrow x^3-1-2x=x^3-x\Leftrightarrow -1-x=0\Rightarrow x=-1\)
a); b) Do tích = 0
=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)
=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
a; *x-1=0 <=>x=1
*2x+5=0 <=>x=-2,5
*x2+2=0 <=> ko có x
b; tương tự a
Đặt \(x^2+3x-4=a;2x^2-5x+3=b\)
Ta có phương trình: \(a^3+b^3=\left(a+b\right)^3\)
=>3ab(a+b)=0
\(\Leftrightarrow\left(x^2+3x-4\right)\left(2x^2-5x+3\right)\left(3x^2-2x-1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left(x-1\right)\left(2x-3\right)\left(x-1\right)\left(3x+1\right)=0\)
hay \(x\in\left\{-4;1;\dfrac{3}{2};-\dfrac{1}{3}\right\}\)
Tui nghĩ đề phải vậy nè:
\(\left(x-1\right)^3+\left(x+2\right)^3=\left(2x+1\right)^3\)
Đặt: \(\left\{{}\begin{matrix}x-1=a\\x+2=b\end{matrix}\right.\) Thì pt trên trở thành:
\(a^3+b^3-\left(a+b\right)^3=0\)
\(\Leftrightarrow a^3+b^3-a^3-b^3-3ab\left(a+b\right)=0\)
\(\Leftrightarrow ab\left(a+b\right)=0\)
Xét các trường hợp sau ta được:
\(\left[{}\begin{matrix}x-1=0\\x+2=0\\1x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy pt trên có \(n_0S=\left\{1;-2;-\frac{1}{2}\right\}\)
Lời giải :
Đặt \(\hept{\begin{cases}x^2+3x-4=a\\2x^2-5x+3=b\end{cases}}\)
\(\Rightarrow a+b=\left(x^2+3x-4\right)+\left(2x^2-5x+3\right)=3x^2-2x-1\)
Khi đó phương trình đã cho trở thành :
\(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow a^3+b^3=a^3+b^3+3ab.\left(a+b\right)\)
\(\Leftrightarrow3ab.\left(a+b\right)=0\) \(\Rightarrow\orbr{\begin{cases}a+b=0\\ab=0\end{cases}}\)
+) Với \(a+b=0\Rightarrow3x^2-2x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)
+) Với \(ab=0\Rightarrow\left(x^2+3x-4\right).\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+3x-4=0\left(1\right)\\2x^2-5x+3=0\left(2\right)\end{cases}}\)
Pt (1) \(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
Pt (2) \(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}\)
Vạy phương trình đã cho có tập nghiệm \(S=\left\{-4,-\frac{1}{3},1,\frac{3}{2}\right\}\)
a) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)
ĐKXĐ \(x-1\ne0\) hoặc \(x+3\ne0\)
\(\Rightarrow x\ne1\) và \(x\ne-3\)
\(\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(2x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)
\(\Leftrightarrow3x^2+9x-x-3-\left(2x^2-2x+5x-5\right)=x^2+3x-x-3-4\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+3x-x-3-4\)
\(\Leftrightarrow9x-x+2x-5x-3x+x=3-5-3-4\)
\(\Leftrightarrow3x=-9\)
\(\Leftrightarrow x=-3\) (không thỏa ĐK)
Vậy PTVN
b) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)
ĐKXĐ: \(x-3\ne0\Rightarrow x\ne3\)
\(x+3\ne0\Rightarrow x\ne-3\)
\(2x+7\ne0\Rightarrow2x\ne-7\Rightarrow x\ne\dfrac{-7}{2}\)
\(\dfrac{13\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}+\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}=\dfrac{6\left(2x+7\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}\)
\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)
\(\Leftrightarrow13x+39+x^2+3x-3x-9=12x+42\)
\(\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow x^2-3x+4x-12=0\)
\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\left\{{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\left(KTĐK\right)\\x=-4\left(TĐK\right)\end{matrix}\right.\)
Vậy S={-4}
a) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\) ( đk: x ≠ 1 ; x ≠ -3 )
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+3x-x-3-4\)
\(\Leftrightarrow3x=-9\)
\(\Rightarrow x=-3\left(KTM\right)\)
S = ∅
b) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)
( đk: x ≠ ± 3 ; x ≠ \(\dfrac{-7}{2}\) )
\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)
\(\Leftrightarrow13x+39+x^2-9=12x+42\)
\(\Leftrightarrow x^2-x-12=0\)
\(\Leftrightarrow x^2+3x-4x-12=0\)
\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-4=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\left(TM\right)\\x=3\left(KTM\right)\end{matrix}\right.\)
S = \(\left\{4\right\}\)
\(\left(2x-3\right)^2=\left(2x-3\right)\left(x-1\right)\)
\(\left(2x-3\right)^2-\left(2x-3\right)\left(x-1\right)=0\)
\(\left(2x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1,5\\x=2\end{cases}}\)
Vay \(x\in\left\{1,5;2\right\}\)
\(\left(2x-3\right)^2=\left(2x-3\right)\left(x-1\right)\)
\(\Leftrightarrow4x^2-9-2x^2+3x-3=0\)
\(\Leftrightarrow2x^2+3x-12=0\)
\(\Leftrightarrow2x^2+3x=12\)
Từ đây bạn làm nốt nhé
Nếu sai thì thông cảm cho mình nha