Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\Leftrightarrow\left(x^2-6x-7\right)^2-\left(3x^2-12x-9\right)^2=0\)
\(\Leftrightarrow\left(3x^2-12x-9-x^2+6x+7\right)\left(3x^2-12x-9+x^2-6x-7\right)=0\)
\(\Leftrightarrow\left(2x^2-6x-2\right)\left(4x^2-18x-16\right)=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(2x^2-9x-8\right)=0\)
hay \(x\in\left\{\dfrac{3+\sqrt{13}}{2};\dfrac{3-\sqrt{13}}{2};\dfrac{9+\sqrt{145}}{4};\dfrac{9-\sqrt{145}}{4}\right\}\)
a)Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3+1=2x\left(1\right)\)
Phương trình trở thành: \(x^3+1=2a\left(2\right)\)
Trừ theo vế (1) và (2):
a3-x3=2(x-a)<=>(a-x)(a2+ax+x2+2)=0<=>a=x
\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1-\sqrt{5}}{2}\\x=\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)Vậy phương trình có tập nghiệm S=\(\left\{1;\frac{-1+\sqrt{5}}{2};\frac{-1-\sqrt{5}}{2}\right\}\)
b)ĐKXĐ:\(x\in R\)
pt\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1\le0\\\left(x^2-3x+1\right)^2=\frac{1}{3}\left(x^4+4x^2+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3-\sqrt{5}}{2}\le x\le\frac{3+\sqrt{5}}{2}\\2x^4-18x^3+29x^2-18x+2=0\left(1\right)\end{matrix}\right.\)
Xét x=0 ko là nghiệm của pt(loại)
x khác 0.Khi đó ta chia cả hai vế của (1) cho x2 ta có:\(2x^2-18x+29-\frac{18}{x}+\frac{2}{x^2}=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-4-18\left(x+\frac{1}{x}\right)+29=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-18\left(x+\frac{1}{x}\right)+25=0\)
Khi đó ta sẽ tìm được các nghiệm của pt
2.
\(DK:\hept{\begin{cases}x\ge-\frac{1}{5}\\x\ne0\end{cases}}\)
PT
\(\Leftrightarrow6+3\sqrt{5x+1}\left(\sqrt{5x+1}-1\right)=14\left(\sqrt{5x+1}-1\right)\)
\(\Leftrightarrow15x+23-17\sqrt{5x+1}=0\)
\(\Leftrightarrow\left(68-17\sqrt{5x+1}\right)+\left(15x-45\right)=0\)
\(\Leftrightarrow\frac{17\left(x-3\right)}{4+\sqrt{5x+1}}+15\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{17}{4+\sqrt{5x+1}}+15\right)=0\)
Vi \(\frac{17}{4+\sqrt{5x+1}}+15>0\)
\(\Rightarrow x=3\left(n\right)\)
Vay nghiem cua PT la \(x=3\)
Giải các Pt sau:
cos5s - sin2x =0
sin5x + cos2x =1
cos2x + \(2\sqrt{3}sinxcosx\) - sin2x = \(\sqrt{2}\)
a) \(x+\sqrt{3x^2+1}=m\)
<=> \(\sqrt{3x^2+1}=m-x\)
ta thẩ : \(\sqrt{3x^2+1}\ge0\)=> \(m-x\ge0\)
<=> \(m\ge x\)