Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\le\frac{5-\sqrt{7}}{6},\frac{5+\sqrt{7}}{6}\le x\)
Ta có: \(8x^4+2=36x^4+9+100x^2+36x^2-60x-120x^3\)
<=> \(28x^4-120x^3+136x^2-60x+7=0\)
<=> \(\left(2x^2-6x+1\right)\left(14x^2-18x+7\right)=0\)
<=> \(\orbr{\begin{cases}2x^2-6x+1=0\\14x^2-18x+7=0\end{cases}}\)
\(TH_1:2x^2-6x+1=0\)
<=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{7}}{2}\left(n\right)\\x=\frac{3-\sqrt{7}}{2}\left(n\right)\end{cases}}\)
\(TH_2:14x^2-18x+7=0\)
<=> \(x\in\Phi\)( Tự c/m)
Vậy \(S=\left\{\frac{3\pm\sqrt{7}}{2}\right\}\)
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
Đặt \(t=6x+1\)và \(h=\sqrt{x^2+3}\)
\(\frac{1}{4}\cdot t^2+h^2-\frac{9}{4}=th\)
\(\Leftrightarrow\left(t-2h\right)^2=9\)
\(\Leftrightarrow t-2h=\pm3\)
Với \(t-2h=3\)ta có
\(6x+1-2\sqrt{x^2+3}=3\)
\(\Leftrightarrow3x-1=\sqrt{x^2+3}\)
\(\Leftrightarrow\hept{\begin{cases}3x-1\ge0\\x^2+3=\left(3x+2\right)^2\end{cases}\Leftrightarrow x=\frac{\sqrt{7}-3}{4}}\)
Vậy pt có nghiệm là \(x=1;x=\frac{\sqrt{7}-3}{4}\)
Đk : x >= -70
Đặt : \(\sqrt{x+70}=a\); \(\sqrt{2x^2+4x+16}=b\)
=> 6x^2+10x-92 = 3b^2 - 2a^2
pt trở thành :
3b^2 - 2a^2 + ab = 0
<=> (3b^2+3ab)-(2ab+2a^2) = 0
<=> (a+b).(3b-2a) = 0
<=> a+b=0 hoặc 3b-2a = 0
<=> a=-b hoặc 2a=3b
Đến đó bạn tự thay vào mà làm nha
Tk mk nha
a/
ĐKXĐ: \(x\ge\frac{5}{3}\)
\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)
\(\Rightarrow x=3\)
b/ \(\left\{{}\begin{matrix}2x-y\ge1\\x+2y\ge0\end{matrix}\right.\) (1)
Biến đổi pt dưới:
\(\left(2\left(x+2y\right)-1\right)\sqrt{2x-y-1}=\left(2\left(2x-y-1\right)-1\right)\sqrt{x+2y}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2y}=a\ge0\\\sqrt{2x-y-1}=b\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(2a^2-1\right)b=\left(2b^2-1\right)a\)
\(\Leftrightarrow2a^2b-2ab^2+a-b=0\)
\(\Leftrightarrow2ab\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Rightarrow a=b\) (do \(\left\{{}\begin{matrix}a\ge0\\b\ge0\end{matrix}\right.\) \(\Rightarrow2ab+1>0\))
\(\Rightarrow\sqrt{x+2y}=\sqrt{2x-y-1}\Leftrightarrow x+2y=2x-y-1\)
\(\Leftrightarrow x=3y+1\)
Thế vào pt trên:
\(\left(3y+1\right)^2-5y^2-8y-3=0\)
\(\Leftrightarrow4y^2-2y-2=0\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=4\\y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\end{matrix}\right.\)
Thế nghiệm vào hệ điều kiện (1) thì chỉ có \(\left(x;y\right)=\left(4;1\right)\) thỏa mãn
Câu a) Cứ bình phương và bình phương cho hết căn rồi bấm máy tính giải ra :v
b)pt\(\left(2\right)\)\(\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)=\left(4x-2y-3\right)^2\left(x+2y\right)\)
\(\Leftrightarrow\left(x-3y-1\right)\left(8x^2-8y^2-4x-8y+12xy-1\right)=0\)
Đến đây tự giải thế vào (1)
Nguyễn Việt Lâm Giải giúp t TH2 nha!
Bình phương 2 vế:
\(\Rightarrow28x^4-120x^3+136x^2-60x+7=0\)
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(\Leftrightarrow28x^2-120x+136-\frac{60}{x}+\frac{7}{x^2}=0\)
\(\Leftrightarrow7\left(4x^2+\frac{1}{x^2}\right)-60\left(2x+\frac{1}{x}\right)+136=0\)
Đặt \(2x+\frac{1}{x}=a\Rightarrow a^2-4=4x^2+\frac{1}{x^2}\)
\(\Rightarrow7\left(a^2-4\right)-60a+136=0\)
\(\Leftrightarrow7a^2-60a+108=0\) \(\Rightarrow\left[{}\begin{matrix}a=6\\a=\frac{18}{7}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{1}{x}=6\\2x+\frac{1}{x}=\frac{18}{7}\end{matrix}\right.\) \(\Rightarrow...\)
Do ban đầu bình phương ko điều kiện nên nhớ thử nghiệm vào vế phải của pt ban đầu coi có dương ko, âm thì cần loại nghiệm.