K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

ĐKXD: ∀x

Ta có \(\dfrac{x^{2^{ }}+2x+1}{x^2+2x+2}\) + \(\dfrac{x^2+2x+2}{x^2+2x+3}\) = \(\dfrac{7}{6}\)

Đặt x2 + 2x + 2 là a (a ∈ Q) Ta có phương trình mới ẩn a:

\(\dfrac{a-1}{a}+\dfrac{a}{a+1}\) = \(\dfrac{7}{6}\)

\(\dfrac{6\left(a-1\right)\left(a+1\right)}{6a\left(a+1\right)}\)+\(\dfrac{6a^2}{6a\left(a+1\right)}\) = \(\dfrac{7}{6}\)

\(\dfrac{6\left(a^2-1\right)+6a^2}{6a\left(a+1\right)}\) = \(\dfrac{7a\left(a+1\right)}{6a\left(a+1\right)}\)

Suy ra: 6a2 - 6 + 6a2 = 7a2 + 7a

⇔ 12a2 - 6 - 7a2 - 7a

⇔ 5a2 - 7a - 6 = 0

⇔5a2 - 10a + 3a - 6 = 0

⇔5a( a - 2 ) + 3( a - 2 ) = 0

⇔ (5a + 3)(a - 2) = 0

\(\left[{}\begin{matrix}a-2=0\\5a+3=0\end{matrix}\right.\)\(\left[{}\begin{matrix}a=2\\a=-0,6\end{matrix}\right.\)

Với a = 2 thì:

x2 + 2x + 2 = 2 ⇔ x2 + 2x = 0

⇔ x(x + 2) = 0 ⇔ \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Với a = -0,6 thì:

x2 + 2x + 2 = -0,6 ⇔ x2 + 2x + 1 = -1,6

⇔ (x + 1)2 = -1,6 (Vô lí vì (x + 1)2 ≥ 0)

Vậy S ∈ \(\left\{0;-2\right\}\)

6 tháng 2 2018

a ) \(\dfrac{1}{x-1}-\dfrac{7}{x+2}=\dfrac{3}{x^2+x-2}\) (1)

ĐKXĐ : x\(\ne1;-2.\)

\(\left(1\right)\Leftrightarrow x+2-7x+7=3\)

\(\Leftrightarrow-6x=-6\)

\(\Leftrightarrow x=1\left(loại\right)\)

Vậy pt vô nghiệm .

b ) \(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)

Đặt \(x^2+2x+1=t\) ta được :

\(\dfrac{t}{t+1}+\dfrac{t+1}{t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow6t^2+12t+6t^2+12t+6=7\left(t^2+3t+2\right)\)

\(\Leftrightarrow5t^2+3t-8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{8}{5}\end{matrix}\right.\)

Khi t = 1

\(\Leftrightarrow\left(x+1\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Khi \(t=-\dfrac{8}{5}\)

\(\Leftrightarrow\left(x+1\right)^2=-\dfrac{8}{5}\) ( vô lí )

Vậy ............

18 tháng 1 2018

Đặt \(u=x^2-2x+2\)

=> Pt tương đương :

\(\dfrac{1}{u}+\dfrac{2}{u+1}=\dfrac{6}{u+2}\)

\(\Leftrightarrow\dfrac{\left(u+1\right)\left(u+2\right)+2u\cdot\left(u+2\right)}{u\left(u+1\right)\left(u+2\right)}=\dfrac{6u\left(u+1\right)}{u\left(u+1\right)\left(u+2\right)}\)

\(\Leftrightarrow\left(u+1\right)\left(u+2\right)+2u\left(u+2\right)=6u\left(u+1\right)\)

\(\Leftrightarrow u^2+3u+2+2u^2+4u=6u^2+6u\)

\(\Leftrightarrow-3u^2+u+2=0\)

\(\Rightarrow\left[{}\begin{matrix}u=1\\u=-\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-2x+2=1\\x^2-2x+2=-\dfrac{2}{3}\end{matrix}\right.\Rightarrow x=1\)

Kết luận \(x=1\)

18 tháng 1 2018

\(pt\Leftrightarrow\dfrac{1}{\left(x-1\right)^2+1}+\dfrac{2}{\left(x-1\right)^2+2}=\dfrac{6}{\left(x-1\right)^2+3}\)

Đặt: \(\left(x-1\right)^2=t\ge0\)

\(pt\Leftrightarrow\dfrac{1}{t+1}+\dfrac{2}{t+2}=\dfrac{6}{t+3}\)

\(\Rightarrow\dfrac{t+2+2\left(t+1\right)}{\left(t+1\right)\left(t+2\right)}=\dfrac{6}{t+3}\)

\(\Rightarrow\dfrac{t+2+2t+2}{\left(t+1\right)\left(t+2\right)}=\dfrac{6}{t+3}\)

\(\Rightarrow\dfrac{3t+4}{\left(t+1\right)\left(t+2\right)}=\dfrac{6}{t+3}\)

\(\Rightarrow\left(3t+4\right)\left(t+3\right)=6\left(t+1\right)\left(t+2\right)\)

Phân tích ra:v

7 tháng 6 2017

giải pt sau

g) 11+8x-3=5x-3+x

\(\Leftrightarrow\) 8x + 8 = 6x - 3

<=> 8x-6x = -3 - 8

<=> 2x = -11

=> x=-\(\dfrac{11}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{11}{2}\)}

h)4-2x+15=9x+4-2x

<=> 19 - 2x = 7x + 4

<=> -2x - 7x = 4 - 19

<=> -9x = -15

=> x=\(\dfrac{15}{9}=\dfrac{5}{3}\)

Vậy tập nghiệm của pt là : S={\(\dfrac{5}{3}\)}

g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)

<=> \(\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{5.2+6.2x}{6}\)

<=> 9x + 6 - 3x + 1 = 10 + 12x

<=> 6x + 7 = 10 + 12x

<=> 6x -12x = 10-7

<=> -6x = 3

=> x= \(-\dfrac{1}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{1}{2}\)}

\(h,\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{x+4-5\left(x+4\right)}{5}=\dfrac{4x+2-5.5}{5}\)

<=> x + 4 - 5x - 20 = 4x + 2 - 25

<=> x - 5x - 4x = 2-25-4+20

<=> -8x = -7

=> x= \(\dfrac{7}{8}\)

Vậy tập nghiệm của PT là S={\(\dfrac{7}{8}\)}

\(i,\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)

<=> \(\dfrac{21\left(4x+3\right)}{105}\)-\(\dfrac{15\left(6x-2\right)}{105}\)=\(\dfrac{35\left(5x+4\right)+3.105}{105}\)

<=> 84x + 63 - 90x + 30 = 175x + 140 + 315

<=> 84x - 90x - 175x = 140 + 315 - 63 - 30

<=> -181x = 362

=> x = -2

Vậy tập nghiệm của PT là : S={-2}

K) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)-150}{30}\)

<=> 25x + 10 - 80x - 10 = 24x + 12 - 150

<=> -55x = 24x - 138

<=> -55x - 24x = -138

=> -79x = -138

=> x=\(\dfrac{138}{79}\)

Vậy tập nghiệm của PT là S={\(\dfrac{138}{79}\)}

m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)

<=> \(\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)

<=> 6x - 3 - 5x + 10 = x+7

<=> x + 7 = x+7

<=> 0x = 0

=> PT vô nghiệm

Vậy S=\(\varnothing\)

n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)

<=> \(\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)

<=> \(\dfrac{1}{4}x+\dfrac{1}{2}x+\dfrac{1}{3}x=3-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}\)

<=> \(\dfrac{13}{12}x=\dfrac{13}{12}\)

=> x= 1

Vậy S={1}

p) \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-6\)

<=> \(\dfrac{2x-2x+1}{6}=\dfrac{x-36}{6}\)

<=> 2x -2x + 1= x-36

<=> 2x-2x-x = -37

=> x = 37

Vậy S={37}

q) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)

<=> \(\dfrac{4\left(2+x\right)-20.0,5x}{20}=\dfrac{5\left(1-2x\right)+20.0,25}{20}\)

<=> 8 + 4x - 10x = 5 - 10x + 5

<=> 4x-10x + 10x = 5+5-8

<=> 4x = 2

=> x= \(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}

7 tháng 6 2017

g) \(11+8x-3=5x-3+x\)

\(\Leftrightarrow8+8x=6x-3\)

\(\Leftrightarrow8x-6x=-3-8\)

\(\Leftrightarrow2x=-11\)

\(\Leftrightarrow x=-\dfrac{11}{2}\)

h, \(4-2x+15=9x+4-2x\)

\(\Leftrightarrow-2x-9x+2x=4-4-15\)

\(\Leftrightarrow-9x=-15\)

\(\Leftrightarrow x=\dfrac{-15}{-9}=\dfrac{5}{3}\)

b: \(\Leftrightarrow\dfrac{2}{\left(x+7\right)\left(x-3\right)}=\dfrac{3x+21}{\left(x-3\right)\left(x+7\right)}\)

=>3x+21=2

=>x=-19/3

d: \(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)

\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1=8\)

=>8x=8

hay x=1

4 tháng 3 2018

a) ĐKXĐ: \(x\ne\pm2\)

Ta có: \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)

\(\Leftrightarrow\dfrac{x}{x+2}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow x\left(x-2\right)=x^2+4\)

\(\Leftrightarrow x^2-2x=x^2+4\)

\(\Leftrightarrow-2x=4\Leftrightarrow x=-2\)(KTMĐK)

Vậy phương trình vô nghiệm

4 tháng 3 2018

b) ĐKXĐ: \(x\ne3;x\ne-1\)

Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)-2.2x=0\)

\(\Leftrightarrow x^2+x+x^2-3x-4x=0\)

\(\Leftrightarrow2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=3\left(KTMĐK\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm là \(x=0\)

a: \(\Leftrightarrow\dfrac{x+5}{2x-1}+\dfrac{2x-1}{x+5}-2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+5\right)+\left(2x-1\right)^2-2\left(2x-1\right)\left(x+5\right)=0\)

\(\Leftrightarrow x^2+10x+25+4x^2-4x+1-2\left(2x^2+10x-x-5\right)=0\)

\(\Leftrightarrow5x^2+6x+26-4x^2-18x+10=0\)

\(\Leftrightarrow x^2-12x+36=0\)

=>x=6

b: \(\dfrac{9x-27}{2x-7}-\dfrac{8x-28}{x-3}=0\)

\(\Leftrightarrow9\left(x-3\right)^2-4\left(2x-7\right)^2=0\)

\(\Leftrightarrow\left(3x-9\right)^2-\left(4x-14\right)^2=0\)

\(\Leftrightarrow\left(3x-9-4x+14\right)\left(3x-9+4x-14\right)=0\)

\(\Leftrightarrow\left(5-x\right)\left(7x-23\right)=0\)

hay \(x\in\left\{5;\dfrac{23}{7}\right\}\)

16 tháng 2 2018

điều kiện xác định \(x\ne0\)

ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)

\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)

tới đây bn bấm máy tính nha

16 tháng 2 2018

câu b lm tương tự nha

a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

=>x=3 hoặc x=-10/7

b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)

\(\Leftrightarrow x^2-12x-51+13x+39=0\)

\(\Leftrightarrow x^2+x-12=0\)

=>(x+4)(x-3)=0

=>x=-4