K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

\(\left(x+3\right)^2\left(x^2+6x+1\right)=9\)

\(\Leftrightarrow\left(x+3\right)^2\left(x^2+6x+9-8\right)=9\)

\(\Leftrightarrow\left(x+3\right)^2\left[\left(x+3\right)^2-8\right]=9\)

\(\Leftrightarrow\left(x+3\right)^4-8\left(x+3\right)^2-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)^2=-1\left(loai\right)\\\left(x+3\right)^2=9\left(tm\right)\end{matrix}\right.\)

\(\left(x+3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}x+3=3\\x+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\) vậy........

10 tháng 8 2020

a); b) Do tích = 0 

=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)

=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

10 tháng 8 2020

a; *x-1=0 <=>x=1

    *2x+5=0 <=>x=-2,5

    *x2+2=0 <=> ko có x

b; tương tự a

\(\Leftrightarrow\left(9x-18\right)^2=\left(7x+1\right)^2\)

\(\Leftrightarrow\left(9x-18-7x-1\right)\left(9x-18+7x+1\right)=0\)

\(\Leftrightarrow\left(2x-19\right)\left(16x-17\right)=0\)

hay \(x\in\left\{\dfrac{19}{2};\dfrac{17}{16}\right\}\)

1 tháng 4 2018

huyền thoại đêm trăng cho mình hỏi tại sao bạn biết nhân 6 và 2 vào vậy

15 tháng 6 2018

\(\left(x^2-6x\right)^2-2\left(x-3\right)^2=81\)

\(\Leftrightarrow\left(x^2-6x\right)^2-2\left(x^2-6x+9\right)=81\)

Đặt \(x^2-6x=t\), khi đó pt mang dạng:

\(t^2-2\left(t+9\right)=81\)\(\Leftrightarrow t^2-2t-18=81\)

\(\Leftrightarrow t^2-2t-99=0\Leftrightarrow t^2+9t-11t-99=0\)

\(\Leftrightarrow t\left(t+9\right)-11\left(t+9\right)=0\Leftrightarrow\left(t+9\right)\left(t-11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+9=0\\t-11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2-6x+9=0\\x^2-6x-11=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-6x+9=0\\x^2-2.x.3+9-20=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)^2=0\\\left(x-3\right)^2=20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\sqrt{20}+3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\sqrt{5}+3\end{cases}}\)

Vậy tập nghiệm của pt là \(S=\left\{3;2\sqrt{5}+3\right\}.\)

26 tháng 4 2022

Bn làm sai gòi bn ơi

10 tháng 1 2020

giúp em với mọi người ơi:<<<<<

31 tháng 3 2016

a) x vô nghiệm

b)<=>(x2-3x+3)(x2-2x+3)-2x2=(x-3)(x-1)(x2-x+3)

=>(x-3)(x-1)(x2-x+3)=0

TH1:x-3=0

=>X=3

TH2:x-1=0

=>x=1

TH3:x2-x+3=0

<=>(-1)2-4(1.3)=-11

vì -11<0

=>x=1 hoặc 3

bạn tự tiếp làm đi dễ mà

28 tháng 5 2017

câu a:

\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)

đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành

\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)

có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)

  1. \(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)
  2. \(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)
28 tháng 5 2017

Câu b:

Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)

PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)

có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)

  1. \(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)
  2. \(t=x\Leftrightarrow x^2=x^2+1VN\)