K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

\(x^4-6x^3+7x^2+6x-8=0\)

\(\Leftrightarrow x^4-4x^3-2x^3+8x^2-x^2+4x+2x-8=0\)

\(\Leftrightarrow x^3\left(x-4\right)-2x^2\left(x-4\right)-x\left(x-4\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-2x^2-x+2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-2\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\in\left\{-1;1;2;4\right\}\)

Vậy S={-1;1;2;4}

23 tháng 1 2020

\(6x^2-7x+2=0\)

Ta có \(\Delta=7^2-4.6.2=1,\sqrt{\Delta}=1\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7+1}{12}=\frac{2}{3}\\x=\frac{7-1}{12}=\frac{1}{2}\end{cases}}\)

\(x^6-1=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=0\)

Dễ thấy \(\hept{\begin{cases}x^2-x+1>0\forall x\\x^2+x+1>0\forall x\end{cases}}\)nên \(\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\Leftrightarrow x=\pm1\)

23 tháng 1 2020

\(6x^2-7x+2=0\)

\(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)

\(x^6-1=0\)

\(\Leftrightarrow x^6=1\)

\(\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của pt là : \(S=\left\{\pm1\right\}\)

1: \(\Leftrightarrow x^4+x^3+x^2-x^3-x^2-x+2008x^2+2008x+2008=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+2008\right)=0\)

hay \(x\in\varnothing\)

2: \(x^4+x^2+6x-8=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)

hay \(x\in\left\{1;-2\right\}\)

2 tháng 7 2018

Hỏi đáp Toán

Gửi em

11 tháng 7 2019

Đề đúng ch bn

11 tháng 7 2019

chết :> sai đề, sr bạn ha

\(2x^4+x^3-6x^2+x+2=0\)

17 tháng 3 2017

\(x^4+x^2=6x+8\)

\(\Rightarrow x^4+x^2-6x-8=0\)

\(\Rightarrow x^4+x^3+4x^2-x^3-x^2-4x-2x^2-2x-8=0\)

\(\Rightarrow x^2\left(x^2+x+4\right)-x\left(x^2+x+4\right)-2\left(x^2+x+4\right)=0\)

\(\Rightarrow\left(x^2-x-2\right)\left(x^2+x+4\right)=0\)

\(\Rightarrow\left(x^2-2x+x-2\right)\left(x^2+x+4\right)=0\)

\(\Rightarrow\left[x\left(x-2\right)+\left(x-2\right)\right]\left(x^2+x+4\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+1\right)\left(x^2+x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\\x^2+x+4=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\end{matrix}\right.\)

Vậy pt có nghiệm là \(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

17 tháng 3 2017

em bt rồi em chỉ đăng lên cho vui thôi

22 tháng 4 2019

a)

voi x=0 ta thay 0 o phai la no pt

voi x<>0 chia ca 2 ve cho x^2 ta dc

x^2-3x+6-3/x+1/x^2=0

(x^2+1/x^2)-3(x+1/x)+6=0 dat a=x+1/x ta co (x+1/x)^2=a^2=>x^2+1/x^2=a^2-2

=>a^2-3a+4=0=>pt vo no :(

16 tháng 2 2016

cái này bạn cố gắng phân tích ra đi

16 tháng 2 2016

6x4 - x- 7x+ x + 1 = 0

=> (x + 1)(3x + 1)(x - 1)(2x - 1) = 0

=> x + 1 = 0 => x = -1

hoặc 3x + 1 = 0 => x = -1/3

hoặc x - 1 = 0 => x = 1

hoặc 2x - 1 = 0 => x = 1/2

Vậy x = -1, x = -1/3, x = 1 , x = 1/2