Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Biến đổi biểu thức kết hợp với áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(\text{VT}=\sqrt{x^2+2y^2-6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}\)
\(=\sqrt{(x^2-6x+9)+2(y^2+2y+1)}+\sqrt{(x^2+2x+1)+3(y^2+2y+1)}\)
\(=\sqrt{(x-3)^2+2(y+1)^2}+\sqrt{(x+1)^2+3(y+1)^2}\)
\(\geq \sqrt{(x-3)^2}+\sqrt{(x+1)^2}=|x-3|+|x+1|=|3-x|+|x+1|\)
\(\geq |3-x+x+1|=4\)
Dấu "=" xảy ra khi :
\(\left\{\begin{matrix} (y+1)^2=0\\ (3-x)(x+1)\geq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} y=-1\\ -1\leq x\leq 3\end{matrix}\right.\)
a/ ĐKXĐ:...
\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xy=4\\4y^2+xy=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x^2+15xy=20\\16y^2+4xy=20\end{matrix}\right.\)
\(\Rightarrow5x^2+11xy-16y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(5x+16y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-\frac{16}{5}y\end{matrix}\right.\)
Bạn tự thế vào một trong hai pt giải tiếp
Woa nghiệm đẹp:) Nhưng em giải đúng hay ko là một chuyện:v
ĐK: \(x\ge-\frac{3}{2}\)
PT \(\Leftrightarrow x^2+4x+3+\left(2-2\sqrt{2x+3}\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)+\frac{4-4\left(2x+3\right)}{2+\sqrt{2x+3}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-\frac{8\left(x+1\right)}{2+\sqrt{2x+3}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3-\frac{8}{2+\sqrt{2x+3}}\right)=0\)
Giải cái ngoặc nhỏ suy ra x = -1
Giải cái ngoặc to:
\(\Leftrightarrow x+3=\frac{8}{2+\sqrt{2x+3}}\)
Nghiệm xấu quá :( => em bí.
=.=,kệ t,miễn có kết quả đúng đc roy,tại t bay vô thấy cách này nên ko suy nghĩ nhiều
\(\hept{\begin{cases}x^3-y^3-3y^2=9\left(1\right)\\x^2+y^2=x-4y\left(2\right)\end{cases}}\)
Lấy \(\left(1\right)-3.\left(2\right)\) ta có: \(\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Rightarrow x-1=y+2\)
\(\Rightarrow x=y+3\)
Khi đó, từ hệ phương trình \(\left(2\right)\) ta có:
\(\left(y+3\right)^2+y^2=y+3-4y\)
\(\Leftrightarrow2y^2+9y+6=0\)
\(\Leftrightarrow y=\frac{-9\pm\sqrt{33}}{4}\)
Vì \(x=y+3\)
nên \(x=\frac{-9\pm\sqrt{33}}{4}+3=\frac{3\pm\sqrt{33}}{4}\)
Vậy hệ phương trình có cặp nghiệm \(\left(x;y\right)=\left(\frac{3\pm\sqrt{33}}{4};\frac{-9\pm\sqrt{33}}{4}\right)\)
a: \(=\sqrt{x-3-2\sqrt{x-3}+3}\)
\(=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}>=\sqrt{2}\)
Dấu = xảy ra khi x-3=1
=>x=4
Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\)
hpt trở thành:
\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\hept{\begin{cases}x^2+6xy+4y^2=2x+6y+19\left(1\right)\\x^2+4y^2=1-4y\left(2\right)\end{cases}}\)
Lấy 2.(1) + (2) ta được
\(12y^2+12xy-8y+3x^2-4x-39=0\)
\(\Leftrightarrow\left(x+2y+3\right)\left(3x+6y-13\right)=0\)
Tới đây đơn giản rồi e làm tiếp nhé.
PS: Ông học cách viết đề hộ tôi cái ông tướng. Lần nào đọc đề cũng thấy mệt.