Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x=y=-2, pt trở thành:
\(\left(x+2\right)^2z+\left(z+2\right)^2x+26=0\Leftrightarrow\left(x+z+8\right)\left(xz+4\right)=6\)\(\Rightarrow x+z+8\in U\left(6\right)\)
Giải các TH ta thu được cặp số (x;y) thoả mãn đk là:
(x;y)=(1;-1), (3,-3), (-10;3), (1;-8)
\(x^2+y^2+xy-x-y+2=0\)
\(\Leftrightarrow2x^2+2y^2+2xy-2x-2y+4=0\)
\(\Leftrightarrow x^2+2xy+y^2+x^2+y^2-2x-2y+4=0\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-2x+1+y^2-2y+1+2=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2+2=0\)
Ta thấy \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\forall x,y\\\left(x-1\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\\2>0\end{matrix}\right.\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2+2>0\)
Vậy pt vô nghiệm.