Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
a. Pt trên là pt bậc nhất↔ m-1≠≠ 0
⇔ m≠≠ 1
b. +Với m-1=0 ⇔m=1 pt trên⇔0x=2m-1 (pt vô nghiệm)
+Với m-1≠≠ 0⇔m≠≠ 1 pt trên ⇔x=2m−1m−12m−1m−1
Kết luận :Với m=1 ptvn , với m≠≠ 1 pt có nghiệm duy nhất x=2m−1m−1
a) 7(m-11)x-2x+14=5m
<=> 7xm -77x-2x+14=5m
<=> 7xm-79x=5m-14
<=> (7m-79)x=5m-14
* Biện luận pt:
+) Nếu 7m-79=0 <=> m=\(\frac{79}{7}\)<=> 0x=\(\frac{297}{7}\) ( vô lý)
+) Nếu 7m-79\(\ne0\)<=> x=\(\frac{5m-14}{7m-79}\)
Vậy :
Nếu m=\(\frac{79}{7}\) thì pt vô nghiệm.
Nếu m\(\ne\) \(\frac{79}{7}\) thì S = \(\left\{\frac{5m-14}{7m-79}\right\}\)
b) 2xm + 4(2m+1)= m2+ 4 (x-1)
<=> 2xm + 8m + 4= m2+4x-4
<=> 2xm+8m+4-m2-4x+4=0
<=> (2m-4)x -m2+8m+8=0
<=> (2m-4)x=m2-8m-8
*Biện luận:
+) Nếu 2m-4=0 <=> m=2 <=> 0x=-20 (vô lý ) => pt vô nghiệm.
+) Nếu 2m-4 \(\ne0\) <=> x=\(\frac{m^2-8m-8}{2m-4}\)
Vậy :
Nếu m=2 => pt vô nghiệm
Nếu m\(\ne2=>S=\left\{\frac{m^2-8m-8}{2m-4}\right\}\)
bài dễ mà :)
Pt ẩn x : \(\left(m^2-1\right)x=m+1\) ( 1 )
\(\Leftrightarrow\)\(\left(m+1\right)\left(m-1\right)x=m+1\)
- Nếu \(m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
Pt ( 1 ) có nghiệm : \(x=\frac{m+1}{\left(m+1\right)\left(m-1\right)}=\frac{1}{m-1}\)
Nếu \(m+1=0\Leftrightarrow m=-1\)
Pt ( 1 ) có dạng 0x = 0 pt vô số nghiệm
Nếu \(m-1=0\Leftrightarrow m=1\)
Pt ( 1 ) có dạng 0x = 2 pt vô nghiệm
Vậy * \(m\ne\pm1\)pt ( 1 ) có nghiệm duy nhất \(x=\frac{1}{m-1}\)
* \(m=-1\)pt ( 1 ) vô số nghiệm
* \(m=1\)pt ( 1 ) vô nghiệm
\(\left(m^2-1\right)x=m+1\) \(\left(1\right)\)
+) Nếu \(m^2-1\ne0\Leftrightarrow m\ne\pm1\)
Phương trình có nghiệm duy nhất \(x=\frac{m+1}{m^2-1}=\frac{1}{m-1}\)
+) Nếu \(m=1\)
\(\left(1\right)\Leftrightarrow0x=2\) ( vô lí )
+) Nếu \(m=-1\)
\(\left(1\right)\Leftrightarrow0x=0\) ( luôn đúng )
Vậy với \(m\ne\pm1\) phương trình có 1 nghiệm duy nhất \(x=\frac{1}{m-1}\)
với m =1 thì phương trình vô nghiệm
với m = -1 thì phương trình có nghiệm đúng với mọi x