Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a=…b=…; tìm các hệ thức liên hệ vế trái vế phải
Chú ý: đ. Kiện, h.đ.thức, vi et...
Rút, thế....v.v...
\(\Leftrightarrow\sqrt[3]{\left(2x^2+3x+2\right)}+\sqrt[3]{\left(x^2+3x+3\right)}=6x^2+12x+8\)
\(\Rightarrow\sqrt[3]{\left(2x^2+3x+2\right)}+\sqrt[3]{\left(x^2+3x+3\right)}-6x^2-12x-8=0\)
=>x=-1
a) ĐKXĐ: 1\(\le x\le7\)
phương trình <=> \(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\\ \Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\\\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=7-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\left(thoả.mãn\right) \)
Vậy S={5,4} là tập nghiệm của phương trình
b) PT <=> \(2x^2-6x+4=\sqrt[2]{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\sqrt[2]{x+2}=y,\sqrt[2]{x^2-2x+4}=z\) (y,z>=0)
=> z^2-y^2=x^2-3x+2
pt<=> 2z^2-2y^2=3yz <=> (2z+y)(z-2y)=0
đến đó tự làm tự đặt dkxd
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
đặt a=\(\sqrt{3-8x}\) =>a2=3-8x(1)
b=\(\sqrt{4x-1}\)=>b2=4x-1(2)
Lấy (2) trừ (1) ta dc b2-a2=4(3x-1)
PT đầu bài <=> 6x-2 + \(\sqrt{4x-1}-\sqrt{3-8x}\)=0
<=> 12x-4+\(2\left(\sqrt{4x-1}-\sqrt{3-8x}\right)=0\)
<=>b2-a2+2b-2a=0 <=> (b-a)(b+a+2)=0
Vì a+b+2>2 =>a=b<=>\(\sqrt{3-8x}=\sqrt{4x-1}\)
<=>3-8x=4x-1 <=> 12x=4 <=> x=\(\frac{1}{3}\)
THE END (CON THỂ CHỌN ĐI!!!T CÒN KIẾM GP)
Đề có sai không thế bạn, chỗ \(3x^2\)và \(6x^2\)ấy
nhâm 3x nha sr