K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(\sqrt{x+2\sqrt{5}}\right)^2=\left(\sqrt{y}+\sqrt{z}\right)^2\Leftrightarrow x+2\sqrt{5}=\left(y+z\right)+2\sqrt{yz}\)

Vì \(2\sqrt{5}\)là thành phần vô tỉ mà cả \(x\)hay \(\left(y+z\right)\)đều nguyên dương vì vậy để có 1 hạng tử cân bằng với \(2\sqrt{5}\)thì buộc:

\(2\sqrt{yz}=2\sqrt{5}\Leftrightarrow yz=5\Rightarrow\orbr{\begin{cases}y=1,z=5\\y=5,z=1\end{cases}}\)

\(\Rightarrow x=y+z=6\)

Vậy nhận 2 nghiệm là \(\left(6;1;5\right),\left(6;5;1\right)\)

1 tháng 10 2019

câu 1 sai đề

1 tháng 10 2019

\(\sqrt{x}+1chứkophải\sqrt{x+1}\)

9 tháng 4 2021

ĐỊT MẸ

21 tháng 7 2018

ĐKXĐ:\(\hept{\begin{cases}x-2>0\\y-1>0\\z-5>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\y>1\\z>5\end{cases}}\)

pt\(\Leftrightarrow\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}+\sqrt{x-2}+\sqrt{y-1}+\sqrt{z-5}=16\)

Áp dụng BĐT Cauchy:

\(\frac{4}{\sqrt{x-2}}+\sqrt{x-2}+\frac{1}{\sqrt{y-1}}+\sqrt{y-1}+\frac{25}{\sqrt{z-5}}+\sqrt{z-5}\)

\(\ge2\sqrt{\frac{4}{\sqrt{x-2}}.\sqrt{x-2}}+2\sqrt{\frac{1}{\sqrt{y-1}}.\sqrt{y-1}}+2\sqrt{\frac{25}{\sqrt{z-5}}.\sqrt{z-5}}\)

\(=2\sqrt{4}+2\sqrt{1}+2\sqrt{25}=2.2+2.1+2.5\)

\(=4+2+10=16\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2=4\\y-1=1\\z-5=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\\z=30\end{cases}}\)

13 tháng 10 2018

\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\)( Cauchy)

\(\Rightarrow\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\le\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)

Chứng minh tương tự:

\(\sqrt{\frac{y}{x+z}}\le\frac{2y}{x+y+z};\sqrt{\frac{z}{x+y}}\le\frac{2z}{x+y+z}\)

Cộng theo vế suy ra đocn. Dấu "=" ko xảy ra

15 tháng 5 2017

Dự đoán \(x=y=z=1\) ta tính được \(A=6+3\sqrt{2}\)

Ta sẽ c/m nó là GTLN của A

Thật vậy, ta cần chứng minh \(Σ\left(2+\sqrt{2}-2\sqrt{x}-\sqrt{1+x^2}\right)\ge0\)

\(\LeftrightarrowΣ\left(\frac{2\left(1-x\right)}{1+\sqrt{x}}+\frac{1-x^2}{\sqrt{2}+\sqrt{1+x^2}}\right)\ge0\)

\(\LeftrightarrowΣ\left(x-1\right)\left(1+\frac{1}{\sqrt{2}}-\frac{2}{1+\sqrt{x}}-\frac{x+1}{\sqrt{2}+\sqrt{1+x^2}}\right)+\left(1+\frac{1}{\sqrt{2}}\right)\left(3-x-y-z\right)\ge0\)

\(\LeftrightarrowΣ\left(x-1\right)^2\left(\frac{1}{\left(1+\sqrt{x}\right)^2}-\frac{x+1}{\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)}\right)+\left(1+\frac{1}{\sqrt{2}}\right)\left(3-x-y-z\right)\ge0\)

BĐT cuối đủ để chứng minh 

\(\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)\ge\left(x+1\right)\left(1+\sqrt{x}\right)^2\)

Đặt \(1+x=2k\sqrt{x}\). Hence, theo Cauchy-Schwarz:

\(\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)\)

\(=\sqrt{2}\left(\sqrt{2}+\frac{1}{\sqrt{2}}\sqrt{2\left(1+x^2\right)}\right)\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\sqrt{2\left(1+x^2\right)}\right)\)

\(\ge\sqrt{2}\left(\sqrt{2}+\frac{x+1}{\sqrt{2}}\right)\left(\sqrt{2}x+\frac{x+1}{\sqrt{2}}\right)\)

\(=\frac{1}{\sqrt{2}}\left(x+3\right)\left(3x+1\right)=\frac{1}{\sqrt{2}}\left(3x^2+10x+3\right)\)

\(=\frac{1}{\sqrt{2}}\left(3\left(4k^2-2\right)x+10x\right)2\sqrt{2}x\left(3k^2+1\right)\)

Mặt khác \(\left(x+1\right)\left(1+\sqrt{x}\right)^2=\left(x+1\right)\left(x+1+2\sqrt{x}\right)\)

\(=2k\left(2k+2\right)x=4k\left(k+1\right)x\). Có nghĩa là ta cần phải c/m

\(3k^2+1\ge\sqrt{2}k\left(k+1\right)\Leftrightarrow\left(3-\sqrt{2}\right)k^2-2\sqrt{k}+1\ge0\)

Nó đúng theo AM-GM

\(\left(3-\sqrt{2}\right)k^2-\sqrt{2}k+1\ge\left(2\sqrt{3-\sqrt{2}}-\sqrt{2}\right)k\ge0\)

Hơi đẹp nhỉ nhưng xong r` đó :D

14 tháng 5 2017

bunyakovsky:

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(x+1\right)^2\)

\(\Leftrightarrow\sqrt{1+x^2}+\sqrt{2}.\sqrt{x}\le\sqrt{2}\left(x+1\right)\) 

tương tự :phần còn lại + thêm với\(\left(2-\sqrt{2}\right)\left(x+y+z\right)\)

25 tháng 7 2016

giúp mình nhé 

30 tháng 6 2019

Bài bạn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★  có vài chỗ sai xót cần sửa lại

Còn đây là cách của mình

Để A= \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên 

thì đồng thời \(\sqrt{\frac{2005}{x+y}}\);\(\sqrt{\frac{2005}{y+z}}\);\(\sqrt{\frac{2005}{x+z}}\)là số hữu tỉ

Xét \(\sqrt{\frac{2005}{x+y}}\)là số hữu tỉ 

+  \(2005⋮x+y\)

Do 2005 có duy nhất ước 1 là số chính phương

=> \(x+y=2005\)

Khi đó \(A=1+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số chính phương khi \(\sqrt{\frac{2005}{y+z}}=\sqrt{\frac{2005}{x+z}}=1\)hoặc\(=\frac{1}{2}\)

=> \(x=y=\frac{2005}{2}\)loại

\(x+y⋮2005\)và \(x+y\ne2005\)

=> \(x+y=2005.k^2\)\(k\inℕ^∗,k>1\))

Tương tự :\(y+z=2005.h^2\)

                \(x+z=2005.g^2\)\(h,g\inℕ^∗;h,g>1\)=> \(2\left(x+y+z\right)=2005\left(k+h+g\right)\)

=> \(A=\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\)

Mà \(A\ge1\)

=> \(\frac{3}{2}\ge\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\ge1\)

=> \(\frac{1}{k}+\frac{1}{h}+\frac{1}{g}=1\)

Giả sử \(k\ge h\ge g\)=> \(\frac{1}{k}\le\frac{1}{h}\le\frac{1}{g}\)

=> \(1\le\frac{3}{g}\)=> \(g\le3\)Mà g>1 => \(g\in\left\{2;3\right\}\)

Với \(g=2\)=> \(k+h\)chẵn => \(\frac{1}{k}+\frac{1}{h}=\frac{1}{2}\)=> \(\frac{h+k}{k.h}=\frac{1}{2}\)=> \(k.h\)chẵn => k ; h chẵn

\(\frac{1}{2}\le\frac{2}{h}\)=> \(h\le4\)=> \(h\in\left\{2;4\right\}\)

Thay vào ta được \(h=4;k=4\)

Khi đó \(\hept{\begin{cases}x+y=2005.4\\y+z=2005.16\\x+z=2005.16\end{cases}}\)= >\(\hept{\begin{cases}x=2005.2\\y=2005.2\\z=2005.14\end{cases}}\)

Vậy \(\left(x,y,z\right)=\left(2005.2;2005.2;2005.14\right)\)và các hoán vị

Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì

\(\hept{\begin{cases}\frac{2005}{x+y}\\\frac{2005}{y+z}\\\frac{2005}{x+z}\end{cases}}\)là bình phương của 1 số hữu tỉ

Gỉa sử đặt \(\frac{2005}{x+y}=\left(\frac{a}{b}\right)^2\Leftrightarrow\frac{a^2\left(x+y\right)}{b^2}=2005\)

\(\Rightarrow\orbr{\begin{cases}a^2⋮2005\\x+y⋮2005\end{cases}}\)

Xét \(a^2⋮2005\Rightarrow a^2=2005k\left(k\inℕ^∗\right)\)

\(\Rightarrow\frac{2005}{x+y}=\frac{2005k}{b^2}\)\(\Rightarrow b^2=\left(x+y\right)k\)

mà x,y nguyên dương=> x+y=k

\(\Rightarrow b^2⋮2005\)\(\Rightarrow x+y⋮2005\)\(\Rightarrow x+y=2005\)

Tương tự y+z=z+x=2005

Thay vào ta thấy không có giá trị x,y,z thỏa mãn đề bài

Xét \(x+y⋮2005\)

\(\Rightarrow\frac{2005}{x+y}=\frac{1}{h^2}\left(h\inℕ^∗\right)\)

Tương tự \(\frac{2005}{y+z}=\frac{1}{m^2},\frac{2005}{x+z}=\frac{1}{n^2}\left(m,n\inℕ^∗\right)\)

Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì

\(\frac{1}{h}+\frac{1}{m}+\frac{1}{n}⋮3\)

\(\Rightarrow2005⋮3\)(vô lí)

Vậy không có giá trị x,y,z nguyên dương thỏa mãn đề bài

P/s: Em không biết đúng không nữa, mong cô sửa hộ