K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Giải phương trình sau: $\left ( x+3 \right )\sqrt{(4-x)(12+x)}+x=28$ - Phương trình, hệ phương trình và bất phương trình - Diễn đàn Toán học

18 tháng 3 2019

(x+3)√−x2−8x+48=28−x(x+3)−x2−8x+48=28−x

đăt:{x+3=a√−x2−8x+48=b{x+3=a−x2−8x+48=b

từ đây ta được hệ pt: {a2+b2=−2x+572ab=2x−48⇒(a−b)2=9⇒[a−b=3a+b=3]{a2+b2=−2x+572ab=2x−48⇒(a−b)2=9⇒[a−b=3a+b=3]

đến đây chắc được rồi.

nghiệm: [x=−2−2√7x=−5−√31]

26 tháng 2 2018

MÌnh nghĩ là bình phương 2 vế lên. CÁch làm như sau:

\(\left(\left(x+3\right)\sqrt{\left(4-x\right)\left(12+x\right)}\right)^2=\left(28-x\right)^2\)

Chắc bạn đã học (axb)2=a2x b2. ÁP dụng vào thôi:

=>(x+3)2 (4-x)(12+x) = (28-x)2

=>(x2+6x+9)(48-8x-x2)=784-56x+x2

=>48x2+288x+432-8x3-48x-72x-x4-6x3-9x2=784-56x+x2

=>39x2+168x+432-14x3-x4=784-56+x2

=>-x4-14x3+38x2+168x-296=0

đến đó bạn thử giải XEM

Xin lỗi vì đã không thể giúp bạn. chúc bạn luôn học tốt

4 tháng 1 2020

\(\left(x+3\right)\sqrt{\left(4-x\right).\left(12+x\right)}=28-x\\ \Leftrightarrow\left(x+3\right)\sqrt{48+4x-12x-x^2}=28-x\\ \Leftrightarrow\left(x+3\right)\sqrt{-x^2-8x+48}=28-x\\ \Leftrightarrow\\ \left[\left(x+3\right)\sqrt{-x^2-8x+48}\right]^2=\left(28-x\right)^2\\ \Leftrightarrow\left(x+3\right)^2\left(-x^2-8x+48\right)=784-56x+x^2\\ \Leftrightarrow-\left(x^2+6x+9\right)\left(x^2+8x+48\right)=784-56x+x^2\\ \Leftrightarrow-\left(x^4+8x^3+48x^2+6x^3+48x^2+288x+9x^2+72x+432\right)=784-56x+x^2\\ \Leftrightarrow-x^4-14x^3-105x^2-360x-432-784+56x-x^2=0\\ \Leftrightarrow-x^4-14x^3-107x^2-416x-1216=0\)

Mình làm tới bước này rồi, cậu có thể nhờ máy tính giải hộ ạ

25 tháng 11 2015

vào câu hỏi tương tự nhé bạn, với lại mình chưa học lớp 9

25 tháng 11 2015

\(1\text{) }a=\sqrt{2x^2-4x+3}\Rightarrow x^2-2x=\frac{a^2-3}{2}\)

Pt trở thành \(\frac{a^2-3}{2}+3=2a\)

\(3\text{) }pt\Leftrightarrow2\left(x^2-2x+4\right)+\left(x+2\right)=3\sqrt{x+2}\sqrt{x^2-2x+4}\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x+4}+\sqrt{x+2}\right)\left(\sqrt{x^2-2x+1}-\sqrt{x+2}\right)=0\)

8 tháng 10 2020

\(ĐK:-1\le x\le8\)

Đặt \(\sqrt{1+x}=u;\sqrt{8-x}=v\)thì \(\left(u+v\right)^2=9+2\sqrt{uv}\Rightarrow\sqrt{uv}=\frac{\left(u+v\right)^2-9}{2}\)

Phương trình lúc này có dạng \(\left(u+v\right)+\frac{\left(u+v\right)^2-9}{2}=3\Leftrightarrow\left(u+v\right)^2+2\left(u+v\right)-15=0\)\(\Leftrightarrow\left(u+v+5\right)\left(u+v-3\right)=0\Leftrightarrow\orbr{\begin{cases}u+v=-5\left(L\right)\\u+v=3\left(tm\right)\end{cases}}\)

Như vậy, \(u+v=3\Rightarrow\sqrt{uv}=\frac{3^2-9}{2}=0\Rightarrow uv=0\)

u, v là hai nghiệm của phương trình \(t^2-3t=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=0\end{cases}}\)

* Nếu u = 3, v = 0 thì \(\hept{\begin{cases}\sqrt{1+x}=3\\\sqrt{8-x}=0\end{cases}}\Rightarrow x=8\left(tm\right)\)

* Nếu u = 0, v = 3 thì \(\hept{\begin{cases}\sqrt{1+x}=0\\\sqrt{8-x}=3\end{cases}}\Rightarrow x=-1\left(tm\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-1;8\right\}\)

9 tháng 10 2020

thể giải thích chỗ \(\left(u+v\right)^2=9+2\sqrt{uv}\) đc ko

10 tháng 3 2016

bình phương lên đặt ẩn là ra